BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

998 related articles for article (PubMed ID: 29176845)

  • 1. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing.
    Kelley ML; Strezoska Ž; He K; Vermeulen A; Smith Av
    J Biotechnol; 2016 Sep; 233():74-83. PubMed ID: 27374403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Modification of Guide RNAs for Improved CRISPR Activity in CD34+ Human Hematopoietic Stem and Progenitor Cells.
    Shapiro J; Tovin A; Iancu O; Allen D; Hendel A
    Methods Mol Biol; 2021; 2162():37-48. PubMed ID: 32926376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes.
    Jacobi AM; Rettig GR; Turk R; Collingwood MA; Zeiner SA; Quadros RM; Harms DW; Bonthuis PJ; Gregg C; Ohtsuka M; Gurumurthy CB; Behlke MA
    Methods; 2017 May; 121-122():16-28. PubMed ID: 28351759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugation and Evaluation of Triazole-Linked Single Guide RNA for CRISPR-Cas9 Gene Editing.
    He K; Chou ET; Begay S; Anderson EM; van Brabant Smith A
    Chembiochem; 2016 Oct; 17(19):1809-1812. PubMed ID: 27441384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Stability and Specificity of CRISPR/Cas9 System by Selective Modification of Guide RNAs with 2'-fluoro and Locked Nucleic Acid Nucleotides.
    Sakovina L; Vokhtantsev I; Vorobyeva M; Vorobyev P; Novopashina D
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs.
    Hirata M; Wittayarat M; Tanihara F; Sato Y; Namula Z; Le QA; Lin Q; Takebayashi K; Otoi T
    In Vitro Cell Dev Biol Anim; 2020 Sep; 56(8):614-621. PubMed ID: 32978715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Modification of CRISPR
    Schubert MS; Cedrone E; Neun B; Behlke MA; Dobrovolskaia MA
    J Cytokine Biol; 2018; 3(1):. PubMed ID: 30225466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.
    Steyer B; Carlson-Stevermer J; Angenent-Mari N; Khalil A; Harkness T; Saha K
    Acta Biomater; 2016 Apr; 34():143-158. PubMed ID: 26747759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.
    Rahdar M; McMahon MA; Prakash TP; Swayze EE; Bennett CF; Cleveland DW
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):E7110-7. PubMed ID: 26589814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish.
    Kotani H; Taimatsu K; Ohga R; Ota S; Kawahara A
    PLoS One; 2015; 10(5):e0128319. PubMed ID: 26010089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9.
    Okada K; Aoki K; Tabei T; Sugio K; Imai K; Bonkohara Y; Kamachi Y
    Nucleic Acids Res; 2022 Mar; 50(5):2854-2871. PubMed ID: 35166844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphonoacetate Modifications Enhance the Stability and Editing Yields of Guide RNAs for Cas9 Editors.
    Ryan DE; Diamant-Levi T; Steinfeld I; Taussig D; Visal-Shah S; Thakker S; Lunstad BD; Kaiser RJ; McCaffrey R; Ortiz M; Townsend J; Welch WRW; Singh M; Curry B; Dellinger DJ; Bruhn L
    Biochemistry; 2023 Dec; 62(24):3512-3520. PubMed ID: 35436085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage.
    Riesenberg S; Helmbrecht N; Kanis P; Maricic T; Pääbo S
    Nat Commun; 2022 Jan; 13(1):489. PubMed ID: 35078986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and Efficient Gene Deletion by CRISPR/Cas9.
    Neldeborg S; Lin L; Stougaard M; Luo Y
    Methods Mol Biol; 2019; 1961():233-247. PubMed ID: 30912049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-delivery of Cas9 mRNA and guide RNAs for editing of LGMN gene represses breast cancer cell metastasis.
    Wang Y; Peng Y; Zi G; Chen J; Peng B
    Sci Rep; 2024 Apr; 14(1):8095. PubMed ID: 38582932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs.
    Laustsen A; Bak RO
    Methods Mol Biol; 2019; 1961():127-134. PubMed ID: 30912044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays.
    Kurata M; Wolf NK; Lahr WS; Weg MT; Kluesner MG; Lee S; Hui K; Shiraiwa M; Webber BR; Moriarity BS
    PLoS One; 2018; 13(9):e0198714. PubMed ID: 30222773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.