These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1093 related articles for article (PubMed ID: 29176845)
1. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. Basila M; Kelley ML; Smith AVB PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845 [TBL] [Abstract][Full Text] [Related]
2. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. Kelley ML; Strezoska Ž; He K; Vermeulen A; Smith Av J Biotechnol; 2016 Sep; 233():74-83. PubMed ID: 27374403 [TBL] [Abstract][Full Text] [Related]
3. Chemical Modification of Guide RNAs for Improved CRISPR Activity in CD34+ Human Hematopoietic Stem and Progenitor Cells. Shapiro J; Tovin A; Iancu O; Allen D; Hendel A Methods Mol Biol; 2021; 2162():37-48. PubMed ID: 32926376 [TBL] [Abstract][Full Text] [Related]
4. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Jacobi AM; Rettig GR; Turk R; Collingwood MA; Zeiner SA; Quadros RM; Harms DW; Bonthuis PJ; Gregg C; Ohtsuka M; Gurumurthy CB; Behlke MA Methods; 2017 May; 121-122():16-28. PubMed ID: 28351759 [TBL] [Abstract][Full Text] [Related]
5. Conjugation and Evaluation of Triazole-Linked Single Guide RNA for CRISPR-Cas9 Gene Editing. He K; Chou ET; Begay S; Anderson EM; van Brabant Smith A Chembiochem; 2016 Oct; 17(19):1809-1812. PubMed ID: 27441384 [TBL] [Abstract][Full Text] [Related]
6. Improving Stability and Specificity of CRISPR/Cas9 System by Selective Modification of Guide RNAs with 2'-fluoro and Locked Nucleic Acid Nucleotides. Sakovina L; Vokhtantsev I; Vorobyeva M; Vorobyev P; Novopashina D Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362256 [TBL] [Abstract][Full Text] [Related]
7. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs. Hirata M; Wittayarat M; Tanihara F; Sato Y; Namula Z; Le QA; Lin Q; Takebayashi K; Otoi T In Vitro Cell Dev Biol Anim; 2020 Sep; 56(8):614-621. PubMed ID: 32978715 [TBL] [Abstract][Full Text] [Related]
8. Chemical Modification of CRISPR Schubert MS; Cedrone E; Neun B; Behlke MA; Dobrovolskaia MA J Cytokine Biol; 2018; 3(1):. PubMed ID: 30225466 [TBL] [Abstract][Full Text] [Related]
9. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells. Peng Y; Yang T; Tang X; Chen F; Wang S Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277 [TBL] [Abstract][Full Text] [Related]
10. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells. Steyer B; Carlson-Stevermer J; Angenent-Mari N; Khalil A; Harkness T; Saha K Acta Biomater; 2016 Apr; 34():143-158. PubMed ID: 26747759 [TBL] [Abstract][Full Text] [Related]
11. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Rahdar M; McMahon MA; Prakash TP; Swayze EE; Bennett CF; Cleveland DW Proc Natl Acad Sci U S A; 2015 Dec; 112(51):E7110-7. PubMed ID: 26589814 [TBL] [Abstract][Full Text] [Related]
12. Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish. Kotani H; Taimatsu K; Ohga R; Ota S; Kawahara A PLoS One; 2015; 10(5):e0128319. PubMed ID: 26010089 [TBL] [Abstract][Full Text] [Related]
13. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes. Kumar R; Tiwari K; Saudagar P Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478 [TBL] [Abstract][Full Text] [Related]
14. Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9. Okada K; Aoki K; Tabei T; Sugio K; Imai K; Bonkohara Y; Kamachi Y Nucleic Acids Res; 2022 Mar; 50(5):2854-2871. PubMed ID: 35166844 [TBL] [Abstract][Full Text] [Related]
15. Phosphonoacetate Modifications Enhance the Stability and Editing Yields of Guide RNAs for Cas9 Editors. Ryan DE; Diamant-Levi T; Steinfeld I; Taussig D; Visal-Shah S; Thakker S; Lunstad BD; Kaiser RJ; McCaffrey R; Ortiz M; Townsend J; Welch WRW; Singh M; Curry B; Dellinger DJ; Bruhn L Biochemistry; 2023 Dec; 62(24):3512-3520. PubMed ID: 35436085 [TBL] [Abstract][Full Text] [Related]
16. Clearance of residual genome editing components used for ex vivo genome-editing of allogeneic cell therapy products. Chialastri A; Hoffman H; Fink D; Dashnau JL Cytotherapy; 2024 Nov; 26(11):1341-1352. PubMed ID: 39023463 [TBL] [Abstract][Full Text] [Related]
18. Rapid and Efficient Gene Deletion by CRISPR/Cas9. Neldeborg S; Lin L; Stougaard M; Luo Y Methods Mol Biol; 2019; 1961():233-247. PubMed ID: 30912049 [TBL] [Abstract][Full Text] [Related]
19. Co-delivery of Cas9 mRNA and guide RNAs for editing of LGMN gene represses breast cancer cell metastasis. Wang Y; Peng Y; Zi G; Chen J; Peng B Sci Rep; 2024 Apr; 14(1):8095. PubMed ID: 38582932 [TBL] [Abstract][Full Text] [Related]
20. Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs. Laustsen A; Bak RO Methods Mol Biol; 2019; 1961():127-134. PubMed ID: 30912044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]