BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29177303)

  • 1. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating.
    Mahmoud MA
    Phys Chem Chem Phys; 2017 Dec; 19(47):32016-32023. PubMed ID: 29177303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Effect of Native SiO
    Wang J; de Freitas IC; Alves TV; Ando RA; Fang Z; Camargo PHC
    Chemistry; 2017 May; 23(30):7185-7190. PubMed ID: 28398612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of 4-nitrothiophenol with low energy electrons: Implications for plasmon mediated reactions.
    Schürmann R; Luxford TFM; Vinklárek IS; Kočišek J; Zawadzki M; Bald I
    J Chem Phys; 2020 Sep; 153(10):104303. PubMed ID: 32933272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible light-dependent molecular switches on Ag/AgCl nanostructures.
    Song W; Querebillo CJ; Götz R; Katz S; Kuhlmann U; Gernert U; Weidinger IM; Hildebrandt P
    Nanoscale; 2017 Jun; 9(24):8380-8387. PubMed ID: 28594421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-controlled plasmon-assisted surface catalysis reaction of 4-aminothiophenol dimerizing to p,p'-dimercaptoazobenzene on Ag nanoparticles.
    Liu Y; Yang D; Zhao Y; Yang Y; Wu S; Wang J; Xia L; Song P
    Heliyon; 2019 Apr; 5(4):e01545. PubMed ID: 31061908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SERS spectral evolution of azo-reactions mediated by plasmonic Au@Ag core-shell nanorods.
    Hu M; Huang Z; Liu R; Zhou N; Tang H; Meng G
    Nanoscale Adv; 2022 Nov; 4(22):4730-4738. PubMed ID: 36381518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy.
    Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions.
    Chen K; Wang H
    Nano Lett; 2023 Apr; 23(7):2870-2876. PubMed ID: 36921149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Hot Electron Energy Contributions in Plasmonic Photocatalysis Using Electrochemical Surface-Enhanced Raman Spectroscopy.
    Yu L; Du A; Yang L; Hu Y; Xie W
    J Phys Chem Lett; 2022 Jun; 13(24):5495-5500. PubMed ID: 35695751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Catalytic Activity of Reduced Graphene Oxide Decorated with Au Nanoparticles Triggered by Visible Light.
    Wang J; Trindade FJ; de Aquino CB; Pieretti JC; Domingues SH; Ando RA; Camargo PH
    Chemistry; 2015 Jun; 21(27):9889-94. PubMed ID: 26014031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the kinetic limitations of plasmon catalysis: the case of 4-nitrothiophenol dimerization.
    Koopman W; Sarhan RM; Stete F; Schmitt CNZ; Bargheer M
    Nanoscale; 2020 Dec; 12(48):24411-24418. PubMed ID: 33300518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Photocatalysis with Nonthermalized Hot Carriers.
    Wu S; Chen Y; Gao S
    Phys Rev Lett; 2022 Aug; 129(8):086801. PubMed ID: 36053692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinpointing photothermal contributions in photochemical reactions on plasmonic gold nanoparticles.
    Wang H; Cao Z; Zheng L; Wang X; Su M; Liu H
    Chem Commun (Camb); 2022 Feb; 58(11):1720-1723. PubMed ID: 35024702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Prevalence of Anions at Plasmonic Nanojunctions: A Closer Look at
    Wang CF; O'Callahan BT; Kurouski D; Krayev A; El-Khoury PZ
    J Phys Chem Lett; 2020 May; 11(10):3809-3814. PubMed ID: 32340455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient photothermal-assisted photocatalytic hydrogen production over a plasmonic CuNi bimetal cocatalyst.
    Li J; Huang Y; Luo B; Ma L; Jing D
    J Colloid Interface Sci; 2022 Nov; 626():975-984. PubMed ID: 35839678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis.
    Jiang J; Li H; Zhang L
    Chemistry; 2012 May; 18(20):6360-9. PubMed ID: 22517472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ag Nanoparticle-Induced Oxidative Dimerization of Thiophenols: Efficiency and Mechanism.
    Li H; Si M; Liu L; Chu X; Wang S; Wan L; Yan R; Sun M; Fang Y
    Langmuir; 2018 Sep; 34(38):11347-11353. PubMed ID: 30173517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-induced chemical transformation of PATP adsorbed on Ag nanoparticles by surface-enhanced Raman spectroscopy-a study of the effects from surface morphology of substrate and surface coverage of PATP.
    Xu JF; Liu GK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():873-7. PubMed ID: 25467654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.