These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 29177336)

  • 21. Highly active WO
    Cai Z; Hao X; Sun X; Du P; Liu W; Fu J
    Water Res; 2019 Oct; 162():369-382. PubMed ID: 31299425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution.
    Lian Z; Xu P; Wang W; Zhang D; Xiao S; Li X; Li G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4533-40. PubMed ID: 25658952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced photoelectrochemical properties of TiO
    Xie Z; Liu X; Wang W; Liu C; Li Z; Zhang Z
    Sci Technol Adv Mater; 2014 Oct; 15(5):055006. PubMed ID: 27877718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced visible light photocatalytic performance of CdS sensitized TiO
    Gao X; Liu X; Zhu Z; Gao Y; Wang Q; Zhu F; Xie Z
    Sci Rep; 2017 Apr; 7(1):973. PubMed ID: 28428551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel coupled structures of FeWO4/TiO2 and FeWO4/TiO2/CdS designed for highly efficient visible-light photocatalysis.
    Bera S; Rawal SB; Kim HJ; Lee WI
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9654-63. PubMed ID: 24847976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity.
    Jiang Z; Wei W; Mao D; Chen C; Shi Y; Lv X; Xie J
    Nanoscale; 2015 Jan; 7(2):784-97. PubMed ID: 25434570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase transformation synthesis of TiO
    Liu C; Yang Y; Li J; Chen S
    Nanotechnology; 2018 Jun; 29(26):265401. PubMed ID: 29638218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving photocatalytic activity by construction of immobilized Z-scheme CdS/Au/TiO
    Li J; Xia Z; Ma D; Liu G; Song N; Xiang D; Xin Y; Zhang G; Chen Q
    J Colloid Interface Sci; 2021 Mar; 586():243-256. PubMed ID: 33162042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites.
    Guo X; Di W; Chen C; Liu C; Wang X; Qin W
    Dalton Trans; 2014 Jan; 43(3):1048-54. PubMed ID: 24162269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A CdS/ZnSe/TiO2 nanotube array and its visible light photocatalytic activities.
    Nguyen V; Li W; Pham V; Wang L; Sheng P; Cai Q; Grimes C
    J Colloid Interface Sci; 2016 Jan; 462():389-96. PubMed ID: 26520046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.
    Liu S; Zhang N; Tang ZR; Xu YJ
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6378-85. PubMed ID: 23131118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of TiO
    Feng H; Feng S; Tang N; Zhang S; Zhang X; Liu B
    RSC Adv; 2021 Mar; 11(17):10300-10308. PubMed ID: 35423498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards efficient photocatalytic degradation of organic pollutants in hierarchical TiO
    Zhang R; Wang Q; Zhang J; Lu Q; Liu W; Yin S; Cao W
    Nanotechnology; 2019 Oct; 30(43):434001. PubMed ID: 31320601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile synthesis of CdS/Bi
    Lv T; Li D; Hong Y; Luo B; Xu D; Chen M; Shi W
    Dalton Trans; 2017 Sep; 46(37):12675-12682. PubMed ID: 28914294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photochemical synthesis of CdS-MIL-125(Ti) with enhanced visible light photocatalytic performance for the selective oxidation of benzyl alcohol to benzaldehyde.
    Zhang R; Li G; Zhang Y
    Photochem Photobiol Sci; 2017 Jun; 16(6):996-1002. PubMed ID: 28497824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts.
    Joung SK; Amemiya T; Murabayashi M; Itoh K
    Chemistry; 2006 Jul; 12(21):5526-34. PubMed ID: 16548017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres.
    Sun Y; Zhao Z; Dong F; Zhang W
    Phys Chem Chem Phys; 2015 Apr; 17(16):10383-90. PubMed ID: 25765222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesoporous black TiO
    Cao Y; Xing Z; Li Z; Wu X; Hu M; Yan X; Zhu Q; Yang S; Zhou W
    J Hazard Mater; 2018 Feb; 343():181-190. PubMed ID: 28950206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.
    Ge MZ; Cao CY; Li SH; Tang YX; Wang LN; Qi N; Huang JY; Zhang KQ; Al-Deyab SS; Lai YK
    Nanoscale; 2016 Mar; 8(9):5226-34. PubMed ID: 26878901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.