These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride. Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396 [TBL] [Abstract][Full Text] [Related]
24. Phonon transport and thermoelectric properties of semiconducting Bi Rashid Z; Nissimagoudar AS; Li W Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478 [TBL] [Abstract][Full Text] [Related]
26. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene. Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444 [TBL] [Abstract][Full Text] [Related]
27. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Liao B; Qiu B; Zhou J; Huberman S; Esfarjani K; Chen G Phys Rev Lett; 2015 Mar; 114(11):115901. PubMed ID: 25839292 [TBL] [Abstract][Full Text] [Related]
28. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene. Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331 [TBL] [Abstract][Full Text] [Related]
29. First-principles study of thermal transport in nitrogenated holey graphene. Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371 [TBL] [Abstract][Full Text] [Related]
30. Effects of tensile strain and finite size on thermal conductivity in monolayer WSe Yuan K; Zhang X; Li L; Tang D Phys Chem Chem Phys; 2018 Dec; 21(1):468-477. PubMed ID: 30534676 [TBL] [Abstract][Full Text] [Related]
31. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations. Liu G; Wang H; Gao Y; Zhou J; Wang H Phys Chem Chem Phys; 2017 Jan; 19(4):2843-2849. PubMed ID: 28067931 [TBL] [Abstract][Full Text] [Related]
32. Ultrahigh and anisotropic thermal transport in the hybridized monolayer (BC Shafique A; Shin YH Phys Chem Chem Phys; 2019 Aug; 21(31):17306-17313. PubMed ID: 31353375 [TBL] [Abstract][Full Text] [Related]
33. Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence. Wang H; Qin G; Li G; Wang Q; Hu M Phys Chem Chem Phys; 2017 May; 19(20):12882-12889. PubMed ID: 28474040 [TBL] [Abstract][Full Text] [Related]
34. Thermal transport in functionalized graphene. Kim JY; Lee JH; Grossman JC ACS Nano; 2012 Oct; 6(10):9050-7. PubMed ID: 22973878 [TBL] [Abstract][Full Text] [Related]
35. A strain-induced considerable decrease of lattice thermal conductivity in 2D KAgSe with Coulomb interaction. Xu Z; Xia Q; Gao G Phys Chem Chem Phys; 2022 Oct; 24(40):24917-24923. PubMed ID: 36200432 [TBL] [Abstract][Full Text] [Related]
36. Lattice Thermal Transport in Monolayer Group 13 Monochalcogenides MX (M = Ga, In; X = S, Se, Te): Interplay of Atomic Mass, Harmonicity, and Lone-Pair-Induced Anharmonicity. Nissimagoudar AS; Rashid Z; Ma J; Li W Inorg Chem; 2020 Oct; 59(20):14899-14909. PubMed ID: 32993283 [TBL] [Abstract][Full Text] [Related]
37. First-Principles Determination of Ultralow Thermal Conductivity of monolayer WSe2. Zhou WX; Chen KQ Sci Rep; 2015 Oct; 5():15070. PubMed ID: 26464052 [TBL] [Abstract][Full Text] [Related]
38. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900 [TBL] [Abstract][Full Text] [Related]