These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29177650)

  • 1. Quantitative Profiling of Chaperone/Client Interactions with LUMIER Assay.
    Taipale M
    Methods Mol Biol; 2018; 1709():47-58. PubMed ID: 29177650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of protein-protein interactions using LUMIER assays.
    Blasche S; Koegl M
    Methods Mol Biol; 2013; 1064():17-27. PubMed ID: 23996247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LUMIER: A Discovery Tool for Mammalian Protein Interaction Networks.
    Barrios-Rodiles M; Ellis JD; Blencowe BJ; Wrana JL
    Methods Mol Biol; 2017; 1550():137-148. PubMed ID: 28188528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-Protein Interactions in the Molecular Chaperone Network.
    Freilich R; Arhar T; Abrams JL; Gestwicki JE
    Acc Chem Res; 2018 Apr; 51(4):940-949. PubMed ID: 29613769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatic approach to identify chaperone pathway relationship from large-scale interaction networks.
    Gong Y; Zhang Z; Houry WA
    Methods Mol Biol; 2011; 787():189-203. PubMed ID: 21898237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional Chaperone-Client Interactions Revealed by Genetically Encoded Photo-cross-linkers.
    Zhang S; He D; Lin Z; Yang Y; Song H; Chen PR
    Acc Chem Res; 2017 May; 50(5):1184-1192. PubMed ID: 28467057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple functionalities of molecular chaperones revealed through systematic mapping of their interaction networks.
    Rizzolo K; Houry WA
    J Biol Chem; 2019 Feb; 294(6):2142-2150. PubMed ID: 30194284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CHIP-MYTH: a novel interactive proteomics method for the assessment of agonist-dependent interactions of the human β₂-adrenergic receptor.
    Kittanakom S; Barrios-Rodiles M; Petschnigg J; Arnoldo A; Wong V; Kotlyar M; Heisler LE; Jurisica I; Wrana JL; Nislow C; Stagljar I
    Biochem Biophys Res Commun; 2014 Mar; 445(4):746-56. PubMed ID: 24561123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common Patterns in Chaperone Interactions with a Native Client Protein.
    He L; Hiller S
    Angew Chem Int Ed Engl; 2018 May; 57(20):5921-5924. PubMed ID: 29498447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Analysis of the Chaperone Interaction Networks.
    Kumar A; Rizzolo K; Zilles S; Babu M; Houry WA
    Methods Mol Biol; 2018; 1709():275-291. PubMed ID: 29177666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional specificity of co-chaperone interactions with Hsp90 client proteins.
    Riggs DL; Cox MB; Cheung-Flynn J; Prapapanich V; Carrigan PE; Smith DF
    Crit Rev Biochem Mol Biol; 2004; 39(5-6):279-95. PubMed ID: 15763706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Features of the Chaperone Cellular Network Revealed through Systematic Interaction Mapping.
    Rizzolo K; Huen J; Kumar A; Phanse S; Vlasblom J; Kakihara Y; Zeineddine HA; Minic Z; Snider J; Wang W; Pons C; Seraphim TV; Boczek EE; Alberti S; Costanzo M; Myers CL; Stagljar I; Boone C; Babu M; Houry WA
    Cell Rep; 2017 Sep; 20(11):2735-2748. PubMed ID: 28903051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: A target for cancer therapeutics.
    da Silva VC; Ramos CH
    J Proteomics; 2012 Jun; 75(10):2790-802. PubMed ID: 22236519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput identification of transient extracellular protein interactions.
    Wright GJ; Martin S; Bushell KM; Söllner C
    Biochem Soc Trans; 2010 Aug; 38(4):919-22. PubMed ID: 20658977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperone-client complexes: A dynamic liaison.
    Hiller S; Burmann BM
    J Magn Reson; 2018 Apr; 289():142-155. PubMed ID: 29544626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput screening identifies small molecule inhibitors of molecular chaperones.
    Kondoh Y; Osada H
    Curr Pharm Des; 2013; 19(3):473-92. PubMed ID: 22920900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CHIP: a co-chaperone for degradation by the proteasome.
    Edkins AL
    Subcell Biochem; 2015; 78():219-42. PubMed ID: 25487024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular mechanism of chaperone-client recognition.
    He L; Sharpe T; Mazur A; Hiller S
    Sci Adv; 2016 Nov; 2(11):e1601625. PubMed ID: 28138538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomics reveal distinct chaperone-client interactions in supporting bacterial acid resistance.
    Zhang S; He D; Yang Y; Lin S; Zhang M; Dai S; Chen PR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10872-7. PubMed ID: 27621474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone.
    Lee JH; Zhang D; Hughes C; Okuno Y; Sekhar A; Cavagnero S
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4206-15. PubMed ID: 26195753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.