These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 29177705)
1. Acid-facilitated product release from a Mo(IV) center: relevance to oxygen atom transfer reactivity of molybdenum oxotransferases. Li F; Talipov MR; Dong C; Bali S; Ding K J Biol Inorg Chem; 2018 Mar; 23(2):193-207. PubMed ID: 29177705 [TBL] [Abstract][Full Text] [Related]
2. Comparative kinetics and mechanism of oxygen and sulfur atom transfer reactions mediated by bis(dithiolene) complexes of molybdenum and tungsten. Wang JJ; Kryatova OP; Rybak-Akimova EV; Holm RH Inorg Chem; 2004 Dec; 43(25):8092-101. PubMed ID: 15578849 [TBL] [Abstract][Full Text] [Related]
3. Bis(dithiolene)molybdenum analogues relevant to the DMSO reductase enzyme family: synthesis, structures, and oxygen atom transfer reactions and kinetics. Lim BS; Holm RH J Am Chem Soc; 2001 Mar; 123(9):1920-30. PubMed ID: 11456813 [TBL] [Abstract][Full Text] [Related]
4. Remote Charge Effects on the Oxygen-Atom-Transfer Reactivity and Their Relationship to Molybdenum Enzymes. Paudel J; Pokhrel A; Kirk ML; Li F Inorg Chem; 2019 Feb; 58(3):2054-2068. PubMed ID: 30673233 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic investigation of the oxygen-atom-transfer reactivity of dioxo-molybdenum(VI) complexes. Kail BW; Pérez LM; Zarić SD; Millar AJ; Young CG; Hall MB; Basu P Chemistry; 2006 Sep; 12(28):7501-9. PubMed ID: 16865754 [TBL] [Abstract][Full Text] [Related]
6. Substituent effect on oxygen atom transfer reactivity from oxomolybdenum centers: synthesis, structure, electrochemistry, and mechanism. Basu P; Nemykin VN; Sengar RS Inorg Chem; 2009 Jul; 48(13):6303-13. PubMed ID: 19485389 [TBL] [Abstract][Full Text] [Related]
7. Influence of the oxygen atom acceptor on the reaction coordinate and mechanism of oxygen atom transfer from the dioxo-Mo(VI) complex, Tp(iPr)MoO(2)(OPh), to tertiary phosphines. Basu P; Kail BW; Young CG Inorg Chem; 2010 Jun; 49(11):4895-900. PubMed ID: 20433155 [TBL] [Abstract][Full Text] [Related]
9. DFT study on the oxygen transfer mechanism in nitroethenediamine based H2-receptor antagonists using the bis-dithiolene complex as the model catalyst for N-oxide reductase enzyme. Dhaked DK; Bharatam PV J Inorg Biochem; 2015 Jan; 142():84-91. PubMed ID: 25450022 [TBL] [Abstract][Full Text] [Related]
10. Isomerization and oxygen atom transfer reactivity in oxo-Mo complexes of relevance to molybdoenzymes. Hoffman JT; Einwaechter S; Chohan BS; Basu P; Carrano CJ Inorg Chem; 2004 Nov; 43(24):7573-5. PubMed ID: 15554616 [TBL] [Abstract][Full Text] [Related]
11. The use of a cis-dioxomolybdenum(VI) dinuclear complex with quadradentate 1,4-benzenediylbis(benzyldithiocarbamate)(2-) as model compound for the active site of oxo transfer molybdoenzymes: reactivity, kinetics, and catalysis. Moradi-Shoeili Z; Boghaei DM Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():210-5. PubMed ID: 22226677 [TBL] [Abstract][Full Text] [Related]
12. Oxo-molybdenum(VI,V,IV) complexes of the facially coordinating tris(mercaptoimidazolyl)borate ligand: synthesis, characterization, and oxygen atom transfer reactivity. Tran BL; Carrano CJ Inorg Chem; 2007 Jun; 46(13):5429-38. PubMed ID: 17521186 [TBL] [Abstract][Full Text] [Related]
13. Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media. Sugimoto H; Tano H; Miyake H; Itoh S Dalton Trans; 2011 Mar; 40(10):2358-65. PubMed ID: 21246143 [TBL] [Abstract][Full Text] [Related]
14. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase. Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102 [TBL] [Abstract][Full Text] [Related]
15. Experimental and theoretical study of a truly functional biomimetic molybdenum oxotransferase analogue system. Heinze K; Marano G; Fischer A J Inorg Biochem; 2008; 102(5-6):1199-211. PubMed ID: 18321587 [TBL] [Abstract][Full Text] [Related]
16. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system. Cervilla A; Pérez-Pla F; Llopis E; Piles M Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938 [TBL] [Abstract][Full Text] [Related]
17. Oxygen atom transfer reactivity from a dioxo-Mo(VI) complex to tertiary phosphines: synthesis, characterization, and structure of phosphoryl intermediate complexes. Nemykin VN; Basu P Inorg Chem; 2005 Oct; 44(21):7494-502. PubMed ID: 16212375 [TBL] [Abstract][Full Text] [Related]
18. A new series of molybdenum-(IV), -(V), and -(VI) dithiolate compounds as active site models of molybdoenzymes: preparation, crystal structures, spectroscopic/electrochemical properties and reactivity in oxygen atom transfer. Sugimoto H; Tarumizu M; Tanaka K; Miyake H; Tsukube H Dalton Trans; 2005 Nov; (21):3558-65. PubMed ID: 16234938 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations. Li J; Ryde U Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012 [TBL] [Abstract][Full Text] [Related]
20. Molybdenum complex with bulky chelates as a functional model for molybdenum oxidases. Leppin J; Förster C; Heinze K Inorg Chem; 2014 Dec; 53(23):12416-27. PubMed ID: 25394287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]