These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 29177727)

  • 21. New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: A DFT approach.
    R D; Verma A; Choudhary BC; Sharma RK
    J Mol Graph Model; 2022 Mar; 111():108109. PubMed ID: 34952481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of carbon monoxide on the pristine, B- and Al-doped C3N nanosheets.
    Pashangpour M; Peyghan AA
    J Mol Model; 2015 May; 21(5):116. PubMed ID: 25874725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic properties of graphene nano-flakes: energy gap, permanent dipole, termination effect, and Raman spectroscopy.
    Singh SK; Neek-Amal M; Peeters FM
    J Chem Phys; 2014 Feb; 140(7):074304. PubMed ID: 24559350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of meso-substituents on the electronic transitions of BODIPY dyes: DFT and RI-CC2 study.
    Petrushenko IK; Petrushenko KB
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():623-7. PubMed ID: 25541400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.
    Zhang HP; Luo XG; Lin XY; Zhang YP; Tang PP; Lu X; Tang Y
    J Mol Graph Model; 2015 Sep; 61():224-30. PubMed ID: 26295685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Doping effects on structural and electronic properties of ladderanes and ladder polysilanes: a density functional theory investigation.
    Wang X; Lau KC; Li WK
    J Phys Chem A; 2011 Jul; 115(26):7656-63. PubMed ID: 21671582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TAO-DFT Study on the Electronic Properties of Diamond-Shaped Graphene Nanoflakes.
    Huang HJ; Seenithurai S; Chai JD
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32630573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene.
    Yu S; Zheng W; Wang C; Jiang Q
    ACS Nano; 2010 Dec; 4(12):7619-29. PubMed ID: 21090583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient n-doping of graphene films by APPE (aminophenyl propargyl ether): a substituent effect.
    Kim Y; Yoo JM; Jeon HR; Hong BH
    Phys Chem Chem Phys; 2013 Nov; 15(42):18353-6. PubMed ID: 24071739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations.
    Comparán Padilla VE; Romero de la Cruz MT; Ávila Alvarado YE; García Díaz R; Rodríguez García CE; Hernández Cocoletzi G
    J Mol Model; 2019 Mar; 25(4):94. PubMed ID: 30859395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes.
    Abdul Khaliq R; Kafafy R; Salleh HM; Faris WF
    Nanotechnology; 2012 Nov; 23(45):455106. PubMed ID: 23085573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of silicon- and aluminum-doped phosphorene nanoflakes.
    Olmedo EM; de la Garza CGV; Fomine S
    J Mol Model; 2019 Sep; 25(9):292. PubMed ID: 31475304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups.
    Li Y; Tu X; Wang H; Sanvito S; Hou S
    J Chem Phys; 2015 Apr; 142(16):164701. PubMed ID: 25933778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving As(III) adsorption on graphene based surfaces: impact of chemical doping.
    Cortés-Arriagada D; Toro-Labbé A
    Phys Chem Chem Phys; 2015 May; 17(18):12056-64. PubMed ID: 25873031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic, optical, and adsorption properties of Li-doped hexagonal boron nitride: a GW approach.
    Talukdar D; Bora SS; Ahmed GA
    Phys Chem Chem Phys; 2024 Jan; 26(5):4021-4028. PubMed ID: 38224145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic structure of hybrid pentaheptite carbon nanoflakes containing boron-nitrogen motifs.
    de la Garza CGV; Narváez WEV; Rodríguez LDS; Fomine S
    J Mol Model; 2020 Mar; 26(4):72. PubMed ID: 32146588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption/desorption process of formaldehyde onto iron doped graphene: a theoretical exploration from density functional theory calculations.
    Cortés-Arriagada D; Villegas-Escobar N; Miranda-Rojas S; Toro-Labbé A
    Phys Chem Chem Phys; 2017 Feb; 19(6):4179-4189. PubMed ID: 27990518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effects of Graphene Stacking on the Performance of Methane Sensor: A First-Principles Study on the Adsorption, Band Gap and Doping of Graphene.
    Yang N; Yang D; Zhang G; Chen L; Liu D; Cai M; Fan X
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Ge, Si, and B doping on the adsorption and detection properties of C
    Hoseininezhad-Namin MS; Javanshir Z; Jouyban A; Pargolghasemi P; Rahimpour E
    J Mol Model; 2023 Feb; 29(3):71. PubMed ID: 36808316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.