These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29177778)

  • 41. A comparison of the sampling efficiencies of a range of atmosphere samplers when collecting polymeric diphenylmethane di-isocyanate (MDI) aerosols.
    Hext PM; Booth K; Dharmarajan V; Karoly WJ; Parekh PP; Spence M
    Appl Occup Environ Hyg; 2003 May; 18(5):346-57. PubMed ID: 12746078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols.
    Heo KJ; Ko HS; Jeong SB; Kim SB; Jung JH
    Nano Lett; 2021 Jan; 21(2):1017-1024. PubMed ID: 33444028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gentle Sampling of Submicrometer Airborne Virus Particles using a Personal Electrostatic Particle Concentrator.
    Hong S; Bhardwaj J; Han CH; Jang J
    Environ Sci Technol; 2016 Nov; 50(22):12365-12372. PubMed ID: 27786464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Miniaturizing Wet Scrubbers for Aerosolized Droplet Capture.
    Lee UN; van Neel TL; Lim FY; Khor JW; He J; Vaddi RS; Ong AQW; Tang A; Berthier J; Meschke JS; Novosselov IV; Theberge AB; Berthier E
    Anal Chem; 2021 Aug; 93(33):11433-11441. PubMed ID: 34379402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioaerosol Sampler Choice Should Consider Efficiency and Ability of Samplers To Cover Microbial Diversity.
    Mbareche H; Veillette M; Bilodeau GJ; Duchaine C
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioaerosol sampling by a personal rotating cup sampler CIP 10-M.
    Görner P; Fabriès JF; Duquenne P; Witschger O; Wrobel R
    J Environ Monit; 2006 Jan; 8(1):43-8. PubMed ID: 16395458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.
    Park JW; Kim HR; Hwang J
    Anal Chim Acta; 2016 Oct; 941():101-107. PubMed ID: 27692374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments.
    Schmees DK; Wu YH; Vincent JH
    J Environ Monit; 2008 Dec; 10(12):1426-36. PubMed ID: 19037484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A wind tunnel test of newly developed personal bioaerosol samplers.
    Su WC; Tolchinsky AD; Sigaev VI; Cheng YS
    J Air Waste Manag Assoc; 2012 Jul; 62(7):828-37. PubMed ID: 22866584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria.
    Jensen PA; Todd WF; Davis GN; Scarpino PV
    Am Ind Hyg Assoc J; 1992 Oct; 53(10):660-7. PubMed ID: 1456208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An efficient virus aerosol sampler enabled by adiabatic expansion.
    Yu H; Afshar-Mohajer N; Theodore AD; Lednicky JA; Fan ZH; Wu CY
    J Aerosol Sci; 2018 Mar; 117():74-84. PubMed ID: 32226117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integration of high volume portable aerosol-to-hydrosol sampling and qPCR in monitoring bioaerosols.
    He Q; Yao M
    J Environ Monit; 2011 Mar; 13(3):706-12. PubMed ID: 21258725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of a personal and microenvironmental aerosol speciation sampler (PMASS).
    Geyh AS; Hering S; Kreisberg N; John W
    Res Rep Health Eff Inst; 2004 Nov; (122):1-22; discussion 23-9. PubMed ID: 15675716
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition.
    Noblitt SD; Lewis GS; Liu Y; Hering SV; Collett JL; Henry CS
    Anal Chem; 2009 Dec; 81(24):10029-37. PubMed ID: 19904999
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles.
    Hogan CJ; Kettleson EM; Lee MH; Ramaswami B; Angenent LT; Biswas P
    J Appl Microbiol; 2005; 99(6):1422-34. PubMed ID: 16313415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments.
    Su WC; Tolchinsky AD; Chen BT; Sigaev VI; Cheng YS
    J Environ Monit; 2012 Sep; 14(9):2430-7. PubMed ID: 22833144
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of a high flow rate electrostatic precipitator (ESP) as a particulate matter (PM) collector for toxicity studies.
    Pirhadi M; Mousavi A; Sioutas C
    Sci Total Environ; 2020 Oct; 739():140060. PubMed ID: 32554118
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preferred sampler inlet configurations for collection of aerosolized nano-scale materials.
    Jankovic J; Zontek TL; Moore M; Ogle BR; Hollenbeck S
    Int J Occup Environ Health; 2018; 24(1-2):1-6. PubMed ID: 29902943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of airborne microbial communities using 16S ribosomal RNA: Potential bias due to air sampling stress.
    Zhen H; Krumins V; Fennell DE; Mainelis G
    Sci Total Environ; 2018 Apr; 621():939-947. PubMed ID: 29079080
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Collection efficiency of liquid-based samplers for fungi in indoor air.
    Chang CW; Ting YT; Horng YJ
    Indoor Air; 2019 May; 29(3):380-389. PubMed ID: 30614570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.