BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 29177933)

  • 1. Modeling the effect of collagen fibril alignment on ligament mechanical behavior.
    Stender CJ; Rust E; Martin PT; Neumann EE; Brown RJ; Lujan TJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):543-557. PubMed ID: 29177933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A validated software application to measure fiber organization in soft tissue.
    Morrill EE; Tulepbergenov AN; Stender CJ; Lamichhane R; Brown RJ; Lujan TJ
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1467-1478. PubMed ID: 26946162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structurally based stress-stretch relationship for tendon and ligament.
    Hurschler C; Loitz-Ramage B; Vanderby R
    J Biomech Eng; 1997 Nov; 119(4):392-9. PubMed ID: 9407276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps.
    Franchi M; Ottani V; Stagni R; Ruggeri A
    J Anat; 2010 Mar; 216(3):301-9. PubMed ID: 20070421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix.
    Susilo ME; Roeder BA; Voytik-Harbin SL; Kokini K; Nauman EA
    Acta Biomater; 2010 Apr; 6(4):1471-86. PubMed ID: 19913642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanical model of the cornea considering the crimping morphology of collagen fibrils.
    Liu X; Wang L; Ji J; Yao W; Wei W; Fan J; Joshi S; Li D; Fan Y
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2739-46. PubMed ID: 24692124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and mechanical properties of the longitudinal ligaments and ligamentum flavum of the spine.
    Kirby MC; Sikoryn TA; Hukins DW; Aspden RM
    J Biomed Eng; 1989 May; 11(3):192-6. PubMed ID: 2724939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of elastic fibers, collagen, and extracellular matrix to the multiaxial mechanics of ligament.
    Henninger HB; Ellis BJ; Scott SA; Weiss JA
    J Mech Behav Biomed Mater; 2019 Nov; 99():118-126. PubMed ID: 31351401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the collagen fibril distribution in the medial collateral ligament in a rat knee model.
    Fung DT; Ng GY; Leung MC; Tay DK
    Connect Tissue Res; 2003; 44(1):2-11. PubMed ID: 12945799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells.
    Grytz R; Meschke G
    Biomech Model Mechanobiol; 2010 Apr; 9(2):225-35. PubMed ID: 19802726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Elastic and Collagen Fibers to the Mechanical Behavior of Bovine Nuchal Ligament.
    Halvorsen S; Wang R; Zhang Y
    Ann Biomed Eng; 2023 Oct; 51(10):2204-2215. PubMed ID: 37284997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis.
    Cheng T; Gan RZ
    Biomech Model Mechanobiol; 2008 Oct; 7(5):387-94. PubMed ID: 17710457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new strain energy function for modelling ligaments and tendons whose fascicles have a helical arrangement of fibrils.
    Shearer T
    J Biomech; 2015 Sep; 48(12):3017-25. PubMed ID: 26283409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.
    Reinhardt JW; Gooch KJ
    J Biomech Eng; 2014 Feb; 136(2):021024. PubMed ID: 24317298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A visco-hyperelastic constitutive model for human spine ligaments.
    Jiang Y; Wang Y; Peng X
    Cell Biochem Biophys; 2015 Mar; 71(2):1147-56. PubMed ID: 25347987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior.
    Chandran PL; Barocas VH
    J Biomech Eng; 2006 Apr; 128(2):259-70. PubMed ID: 16524339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biaxial tensile testing and constitutive modeling of human supraspinatus tendon.
    Szczesny SE; Peloquin JM; Cortes DH; Kadlowec JA; Soslowsky LJ; Elliott DM
    J Biomech Eng; 2012 Feb; 134(2):021004. PubMed ID: 22482671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.