BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29177939)

  • 21. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
    Mahr R; Gätgens C; Gätgens J; Polen T; Kalinowski J; Frunzke J
    Metab Eng; 2015 Nov; 32():184-194. PubMed ID: 26453945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of arabinofuranosidases and a xylanase of Corynebacterium alkanolyticum for arabinoxylan utilization in Corynebacterium glutamicum.
    Kuge T; Watanabe A; Hasegawa S; Teramoto H; Inui M
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5019-5032. PubMed ID: 28409383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of d-xylonic acid using a non-recombinant Corynebacterium glutamicum strain.
    Tenhaef N; Brüsseler C; Radek A; Hilmes R; Unrean P; Marienhagen J; Noack S
    Bioresour Technol; 2018 Nov; 268():332-339. PubMed ID: 30092487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
    Jojima T; Noburyu R; Sasaki M; Tajima T; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1165-72. PubMed ID: 25421564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis.
    Liu DX; Fan CS; Tao JH; Liang GX; Gao SE; Wang HJ; Li X; Song DX
    World J Gastroenterol; 2004 Dec; 10(24):3683-7. PubMed ID: 15534933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase.
    Hao N; Mu J; Hu N; Xu S; Yan M; Li Y; Guo K; Xu L
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):307-13. PubMed ID: 25492493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmid copy number mutation in repA gene encoding RepA replication initiator of cryptic plasmid pHM1519 in Corynebacterium glutamicum.
    Hashiro S; Yasueda H
    Biosci Biotechnol Biochem; 2018 Dec; 82(12):2212-2224. PubMed ID: 30122124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved pEKEx2-derived expression vectors for tightly controlled production of recombinant proteins in Corynebacterium glutamicum.
    Bakkes PJ; Ramp P; Bida A; Dohmen-Olma D; Bott M; Freudl R
    Plasmid; 2020 Nov; 112():102540. PubMed ID: 32991924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway.
    Ikeda M; Katsumata R
    Appl Environ Microbiol; 1999 Jun; 65(6):2497-502. PubMed ID: 10347033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of Chondroitin in Engineered
    Cheng F; Luozhong S; Yu H; Guo Z
    J Microbiol Biotechnol; 2019 Mar; 29(3):392-400. PubMed ID: 30691254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum.
    Son YJ; Ryu AJ; Li L; Han NS; Jeong KJ
    Microb Cell Fact; 2016 Jan; 15():12. PubMed ID: 26767787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
    Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a potential stationary-phase specific gene expression system by engineering of SigB-dependent cg3141 promoter in Corynebacterium glutamicum.
    Kim MJ; Yim SS; Choi JW; Jeong KJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4473-83. PubMed ID: 26782746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial production of L -glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb.
    Liu Q; Zhang J; Wei XX; Ouyang SP; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1297-304. PubMed ID: 18040683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering to guide evolution - Creating a novel mode for L-valine production with Corynebacterium glutamicum.
    Schwentner A; Feith A; Münch E; Busche T; Rückert C; Kalinowski J; Takors R; Blombach B
    Metab Eng; 2018 May; 47():31-41. PubMed ID: 29522826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of pOGOduet - An inducible, bicistronic vector for synthesis of recombinant proteins in Corynebacterium glutamicum.
    Goldbeck O; Seibold GM
    Plasmid; 2018 Jan; 95():11-15. PubMed ID: 29331350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z
    Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum.
    Tsuchida Y; Kimura S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1855-66. PubMed ID: 20552356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
    Pérez-García F; Peters-Wendisch P; Wendisch VF
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8075-90. PubMed ID: 27345060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.