BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29177939)

  • 41. Development of a Potential Protein Display Platform in Corynebacterium glutamicum Using Mycolic Acid Layer Protein, NCgl1337, as an Anchoring Motif.
    Choi JW; Yim SS; Jeong KJ
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 29072352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose.
    Lee J; Saddler JN; Um Y; Woo HM
    Microb Cell Fact; 2016 Jan; 15():20. PubMed ID: 26801253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum.
    Shi F; Zhang M; Li Y
    World J Microbiol Biotechnol; 2017 Jun; 33(6):122. PubMed ID: 28534111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
    Baumgart M; Unthan S; Rückert C; Sivalingam J; Grünberger A; Kalinowski J; Bott M; Noack S; Frunzke J
    Appl Environ Microbiol; 2013 Oct; 79(19):6006-15. PubMed ID: 23892752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization.
    Kang MK; Lee J; Um Y; Lee TS; Bott M; Park SJ; Woo HM
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5991-6002. PubMed ID: 24706215
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction of an expression vector that uses the aph promoter for protein expression in Corynebacterium glutamicum.
    Zhang W; Zhao Z; Yang Y; Liu X; Bai Z
    Plasmid; 2017 Nov; 94():1-6. PubMed ID: 28986243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methanol-Essential Growth of
    Hennig G; Haupka C; Brito LF; Rückert C; Cahoreau E; Heux S; Wendisch VF
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32443885
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
    Pérez-García F; Max Risse J; Friehs K; Wendisch VF
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28169491
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter.
    Watanabe T; Morita T; Koike H; Yarimizu T; Shinozaki Y; Sameshima-Yamashita Y; Yoshida S; Koitabashi M; Kitamoto H
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3207-17. PubMed ID: 26695155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. L-Cysteine production by metabolically engineered Corynebacterium glutamicum.
    Kondoh M; Hirasawa T
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2609-2619. PubMed ID: 30729285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic engineering of Corynebacterium glutamicum for glycolate production.
    Zahoor A; Otten A; Wendisch VF
    J Biotechnol; 2014 Dec; 192 Pt B():366-75. PubMed ID: 24486442
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of a novel expression system for use in Corynebacterium glutamicum.
    Hu J; Li Y; Zhang H; Tan Y; Wang X
    Plasmid; 2014 Sep; 75():18-26. PubMed ID: 25108235
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars.
    Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs.
    Sun D; Chen J; Wang Y; Li M; Rao D; Guo Y; Chen N; Zheng P; Sun J; Ma Y
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):203-208. PubMed ID: 30666532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum.
    Li H; Zhang L; Guo W; Xu D
    J Microbiol Methods; 2016 Dec; 131():156-160. PubMed ID: 27793586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heterologous expression of genes for bioconversion of xylose to xylonic acid in Corynebacterium glutamicum and optimization of the bioprocess.
    Sundar MSL; Susmitha A; Rajan D; Hannibal S; Sasikumar K; Wendisch VF; Nampoothiri KM
    AMB Express; 2020 Apr; 10(1):68. PubMed ID: 32296988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.
    Li Y; Cong H; Liu B; Song J; Sun X; Zhang J; Yang Q
    Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.
    Okai N; Miyoshi T; Takeshima Y; Kuwahara H; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):135-45. PubMed ID: 26392137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increasing l-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE.
    Yin L; Shi F; Hu X; Chen C; Wang X
    J Appl Microbiol; 2013 May; 114(5):1369-77. PubMed ID: 23331988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.