BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29178018)

  • 1. Cu(II)-catalyzed degradation of ampicillin: effect of pH and dissolved oxygen.
    Guo Y; Tsang DCW; Zhang X; Yang X
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4279-4288. PubMed ID: 29178018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Roles of Cu(II) in Catalyzing Hydrolysis and Oxidation of β-Lactam Antibiotics.
    Chen J; Sun P; Zhang Y; Huang CH
    Environ Sci Technol; 2016 Nov; 50(22):12156-12165. PubMed ID: 27934235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu(II)-catalyzed transformation of benzylpenicillin revisited: the overlooked oxidation.
    Chen J; Sun P; Zhou X; Zhang Y; Huang CH
    Environ Sci Technol; 2015 Apr; 49(7):4218-25. PubMed ID: 25759948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe(III)-promoted transformation of β-lactam antibiotics: Hydrolysis vs oxidation.
    Chen J; Wang Y; Qian Y; Huang T
    J Hazard Mater; 2017 Aug; 335():117-124. PubMed ID: 28437695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct effects of copper on the degradation of
    Zhang X; Guo Y; Pan Y; Yang X
    Environ Sci Ecotechnol; 2020 Jul; 3():100051. PubMed ID: 36159600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: ampicillin, cefalotin and cefoxitin.
    Mitchell SM; Ullman JL; Teel AL; Watts RJ
    Sci Total Environ; 2014 Jan; 466-467():547-55. PubMed ID: 23948499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical pathways of peptide degradation. X: effect of metal-catalyzed oxidation on the solution structure of a histidine-containing peptide fragment of human relaxin.
    Khossravi M; Borchardt RT
    Pharm Res; 2000 Jul; 17(7):851-8. PubMed ID: 10990205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination and redox interactions of β-lactam antibiotics with Cu
    Božić B; Korać J; Stanković DM; Stanić M; Romanović M; Pristov JB; Spasić S; Popović-Bijelić A; Spasojević I; Bajčetić M
    Free Radic Biol Med; 2018 Dec; 129():279-285. PubMed ID: 30267756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.
    Yuan X; Miller CJ; Pham AN; Waite TD
    Free Radic Biol Med; 2014 Jun; 71():291-302. PubMed ID: 24681336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-catalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: The mechanism and superoxide-mediated cycling of copper species.
    Zhang Y; Fan J; Yang B; Huang W; Ma L
    Chemosphere; 2017 Jan; 166():89-95. PubMed ID: 27689888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ion-catalysed hydrolysis of ampicillin in microbiological growth media.
    Beard SJ; Ciccognani DT; Hughes MN; Poole RK
    FEMS Microbiol Lett; 1992 Sep; 75(2-3):207-11. PubMed ID: 1398038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of dissolved molecular oxygen by Cu(0) for bisphenol a degradation: Role of Cu(0) and formation of reactive oxygen species.
    Long J; Xu L; Zhao L; Chu H; Mao Y; Wu D
    Chemosphere; 2020 Feb; 241():125034. PubMed ID: 31683430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-catalyzed hydroquinone oxidation and associated redox cycling of copper under conditions typical of natural saline waters.
    Yuan X; Pham AN; Miller CJ; Waite TD
    Environ Sci Technol; 2013 Aug; 47(15):8355-64. PubMed ID: 23796190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the reaction of beta-lactam antibiotics with copper(II) ions in aqueous and micellar media: kinetic and spectrometric studies.
    Fernández-González A; Badía R; Díaz-García ME
    Anal Biochem; 2005 Jun; 341(1):113-21. PubMed ID: 15866535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidant Generation Resulting from the Interaction of Copper with Menadione (Vitamin K3)-a Model for Metal-mediated Oxidant Generation in Living Systems.
    Xing G; Miller CJ; Ninh Pham A; Jones AM; Waite TD
    J Inorg Biochem; 2018 Nov; 188():38-49. PubMed ID: 30119016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical pathways of peptide degradation: IX. Metal-catalyzed oxidation of histidine in model peptides.
    Khossravi M; Borchardt RT
    Pharm Res; 1998 Jul; 15(7):1096-102. PubMed ID: 9688066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrate(VI) oxidation of β-lactam antibiotics: reaction kinetics, antibacterial activity changes, and transformation products.
    Karlesa A; De Vera GA; Dodd MC; Park J; Espino MP; Lee Y
    Environ Sci Technol; 2014 Sep; 48(17):10380-9. PubMed ID: 25073066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexation abilities of neuropeptide gamma toward copper(II) ions and products of metal-catalyzed oxidation.
    Pietruszka M; Jankowska E; Kowalik-Jankowska T; Szewczuk Z; Smużyńska M
    Inorg Chem; 2011 Aug; 50(16):7489-99. PubMed ID: 21770367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of reactive oxygen species by promoting the Cu(II)/Cu(I) redox cycle with reducing agents in aerobic aqueous solution.
    Li W; Zhou P; Zhang J; Zhang Y; Zhang G; Liu Y; Cheng X
    Water Sci Technol; 2018 Nov; 78(5-6):1390-1399. PubMed ID: 30388095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of Cu(I) in seawater at low oxygen concentrations.
    Pérez-Almeida N; González-Dávila M; Santana-Casiano JM; González AG; Suárez de Tangil M
    Environ Sci Technol; 2013 Feb; 47(3):1239-47. PubMed ID: 23259733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.