These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29178057)
1. Existence of the passage to the limit of an inviscid fluid. Goldobin DS Eur Phys J E Soft Matter; 2017 Nov; 40(11):103. PubMed ID: 29178057 [TBL] [Abstract][Full Text] [Related]
2. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Turkyilmazoglu M Comput Methods Programs Biomed; 2020 Apr; 187():105171. PubMed ID: 31785535 [TBL] [Abstract][Full Text] [Related]
3. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid. Chokshi P; Bhade P; Kumaran V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023007. PubMed ID: 25768597 [TBL] [Abstract][Full Text] [Related]
4. Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations. Ray SS; Frisch U; Nazarenko S; Matsumoto T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016301. PubMed ID: 21867298 [TBL] [Abstract][Full Text] [Related]
5. Scaling laws in turbulence. Josserand C; Le Berre M; Pomeau Y Chaos; 2020 Jul; 30(7):073137. PubMed ID: 32752609 [TBL] [Abstract][Full Text] [Related]
6. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling. Schilling O; Mueschke NJ Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290 [TBL] [Abstract][Full Text] [Related]
7. Modeling multiphase flow using fluctuating hydrodynamics. Chaudhri A; Bell JB; Garcia AL; Donev A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033014. PubMed ID: 25314536 [TBL] [Abstract][Full Text] [Related]
8. Variational framework for flow optimization using seminorm constraints. Foures DP; Caulfield CP; Schmid PJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026306. PubMed ID: 23005853 [TBL] [Abstract][Full Text] [Related]
9. A one-dimensional viscous-inviscid strong interaction model for flow in indented channels with separation and reattachment. Kalse SG; Bijl H; van Oudheusden BW J Biomech Eng; 2003 Jun; 125(3):355-62. PubMed ID: 12929240 [TBL] [Abstract][Full Text] [Related]
10. Coupled mean flow-amplitude equations for nearly inviscid parametrically driven surface waves. Knobloch E; Martel C; Vega JM Ann N Y Acad Sci; 2002 Oct; 974():201-19. PubMed ID: 12446326 [TBL] [Abstract][Full Text] [Related]
12. Statistical-mechanical theory of rheology: Lennard-Jones fluids. Laghaei R; Eskandari Nasrabad A; Eu BC J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931 [TBL] [Abstract][Full Text] [Related]
13. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition. Chekmarev SF Chaos; 2013 Mar; 23(1):013144. PubMed ID: 23556981 [TBL] [Abstract][Full Text] [Related]
14. Molecular viscosity and diffusivity effects in transitional and shock-driven mixing flows. Pereira FS; Grinstein FF; Israel DM; Rauenzahn R Phys Rev E; 2021 Jan; 103(1-1):013106. PubMed ID: 33601565 [TBL] [Abstract][Full Text] [Related]
15. Viscous Wave Breaking and Ligament Formation in Microfluidic Systems. Hu X; Cubaud T Phys Rev Lett; 2018 Jul; 121(4):044502. PubMed ID: 30095958 [TBL] [Abstract][Full Text] [Related]
16. Understanding the Potential for Dissolution Simulation to Explore the Effects of Medium Viscosity on Particulate Dissolution. D'Arcy DM; Persoons T AAPS PharmSciTech; 2019 Jan; 20(2):47. PubMed ID: 30617668 [TBL] [Abstract][Full Text] [Related]
17. Modeling epidemic flow with fluid dynamics. Cheng Z; Wang J Math Biosci Eng; 2022 Jun; 19(8):8334-8360. PubMed ID: 35801468 [TBL] [Abstract][Full Text] [Related]
18. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios. Porter ML; Coon ET; Kang Q; Moulton JD; Carey JW Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036701. PubMed ID: 23031047 [TBL] [Abstract][Full Text] [Related]
19. Turbulent Micropolar SPH Fluids with Foam. Bender J; Koschier D; Kugelstadt T; Weiler M IEEE Trans Vis Comput Graph; 2019 Jun; 25(6):2284-2295. PubMed ID: 29993747 [TBL] [Abstract][Full Text] [Related]
20. Blowup as a driving mechanism of turbulence in shell models. Mailybaev AA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053011. PubMed ID: 23767624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]