These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

767 related articles for article (PubMed ID: 29178249)

  • 21. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis.
    Islam MM; Yang HC; Poly TN; Jian WS; Jack Li YC
    Comput Methods Programs Biomed; 2020 Jul; 191():105320. PubMed ID: 32088490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists' workload.
    Soto-Pedre E; Navea A; Millan S; Hernaez-Ortega MC; Morales J; Desco MC; Pérez P
    Acta Ophthalmol; 2015 Feb; 93(1):e52-6. PubMed ID: 24975456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study.
    Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B
    Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders.
    Tufail A; Rudisill C; Egan C; Kapetanakis VV; Salas-Vega S; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Srinivas S; Nittala M; Sadda S; Taylor P; Rudnicka AR
    Ophthalmology; 2017 Mar; 124(3):343-351. PubMed ID: 28024825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of a Deep Learning Algorithm for Diabetic Retinopathy.
    Romero-Aroca P; Verges-Puig R; de la Torre J; Valls A; Relaño-Barambio N; Puig D; Baget-Bernaldiz M
    Telemed J E Health; 2020 Aug; 26(8):1001-1009. PubMed ID: 31682189
    [No Abstract]   [Full Text] [Related]  

  • 26. The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy.
    Fleming AD; Goatman KA; Philip S; Williams GJ; Prescott GJ; Scotland GS; McNamee P; Leese GP; Wykes WN; Sharp PF; Olson JA;
    Br J Ophthalmol; 2010 Jun; 94(6):706-11. PubMed ID: 19661069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Use of artificial intelligence in screening for diabetic retinopathy at a tertiary diabetes center].
    Paul S; Tayar A; Morawiec-Kisiel E; Bohl B; Großjohann R; Hunfeld E; Busch M; Pfeil JM; Dähmcke M; Brauckmann T; Eilts S; Bründer MC; Grundel M; Grundel B; Tost F; Kuhn J; Reindel J; Kerner W; Stahl A
    Ophthalmologie; 2022 Jul; 119(7):705-713. PubMed ID: 35080640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy.
    Sosale B; Sosale AR; Murthy H; Sengupta S; Naveenam M
    Indian J Ophthalmol; 2020 Feb; 68(2):391-395. PubMed ID: 31957735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IDx-DR for Diabetic Retinopathy Screening.
    Savoy M
    Am Fam Physician; 2020 Mar; 101(5):307-308. PubMed ID: 32109029
    [No Abstract]   [Full Text] [Related]  

  • 30. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated detection of fundus photographic red lesions in diabetic retinopathy.
    Larsen M; Godt J; Larsen N; Lund-Andersen H; Sjølie AK; Agardh E; Kalm H; Grunkin M; Owens DR
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):761-6. PubMed ID: 12556411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy.
    Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H
    Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Agreement and Diagnostic Test Accuracy on Grading Diabetic Retinopathy Using Fundus Photographs by Allied Medical Personnel at a Community Diabetic Retinopathy Screening Program in Nepal.
    Thapa R; Bajimaya S; Pradhan E; Sharma S; Kshetri BB; Paudel M; Paudyal G
    Ophthalmic Epidemiol; 2021 Dec; 28(6):509-515. PubMed ID: 33502930
    [No Abstract]   [Full Text] [Related]  

  • 34. Artificial intelligence-based screening for diabetic retinopathy at community hospital.
    He J; Cao T; Xu F; Wang S; Tao H; Wu T; Sun L; Chen J
    Eye (Lond); 2020 Mar; 34(3):572-576. PubMed ID: 31455902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Screening for diabetic retinopathy by general practitioners: ophthalmoscopy or retinal photography as 35 mm colour transparencies?
    Owens DR; Gibbins RL; Lewis PA; Wall S; Allen JC; Morton R
    Diabet Med; 1998 Feb; 15(2):170-5. PubMed ID: 9507921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy.
    Krause J; Gulshan V; Rahimy E; Karth P; Widner K; Corrado GS; Peng L; Webster DR
    Ophthalmology; 2018 Aug; 125(8):1264-1272. PubMed ID: 29548646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration.
    González-Gonzalo C; Sánchez-Gutiérrez V; Hernández-Martínez P; Contreras I; Lechanteur YT; Domanian A; van Ginneken B; Sánchez CI
    Acta Ophthalmol; 2020 Jun; 98(4):368-377. PubMed ID: 31773912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images.
    Jacoba CMP; Doan D; Salongcay RP; Aquino LAC; Silva JPY; Salva CMG; Zhang D; Alog GP; Zhang K; Locaylocay KLRB; Saunar AV; Ashraf M; Sun JK; Peto T; Aiello LP; Silva PS
    Ophthalmol Retina; 2023 Aug; 7(8):703-712. PubMed ID: 36924893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya.
    Hansen MB; Abràmoff MD; Folk JC; Mathenge W; Bastawrous A; Peto T
    PLoS One; 2015; 10(10):e0139148. PubMed ID: 26425849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agreement on diabetic retinopathy grading in fundus photographs by allied ophthalmic personnel as compared to ophthalmologist at a community setting in Nepal.
    Thapa R; Bajimaya S; Pradhan E; Paudyal G
    Nepal J Ophthalmol; 2017 Jan; 9(18):43-50. PubMed ID: 29022954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.