These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Scotland GS; McNamee P; Fleming AD; Goatman KA; Philip S; Prescott GJ; Sharp PF; Williams GJ; Wykes W; Leese GP; Olson JA; Br J Ophthalmol; 2010 Jun; 94(6):712-9. PubMed ID: 19965826 [TBL] [Abstract][Full Text] [Related]
44. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of an AI algorithm trained on an ethnically diverse dataset to screen a previously unseen population for diabetic retinopathy. Rao DP; Savoy FM; Sivaraman A; Dutt S; Shahsuvaryan M; Jrbashyan N; Hambardzumyan N; Yeghiazaryan N; Das T Indian J Ophthalmol; 2024 Aug; 72(8):1162-1167. PubMed ID: 39078960 [TBL] [Abstract][Full Text] [Related]
46. Diagnostic test accuracy of diabetic retinopathy screening by physician graders using a hand-held non-mydriatic retinal camera at a tertiary level medical clinic. Piyasena MMPN; Yip JLY; MacLeod D; Kim M; Gudlavalleti VSM BMC Ophthalmol; 2019 Apr; 19(1):89. PubMed ID: 30961576 [TBL] [Abstract][Full Text] [Related]
47. Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database. Baget-Bernaldiz M; Pedro RA; Santos-Blanco E; Navarro-Gil R; Valls A; Moreno A; Rashwan HA; Puig D Diagnostics (Basel); 2021 Jul; 11(8):. PubMed ID: 34441319 [TBL] [Abstract][Full Text] [Related]
48. The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes. Bhaskaranand M; Ramachandra C; Bhat S; Cuadros J; Nittala MG; Sadda SR; Solanki K Diabetes Technol Ther; 2019 Nov; 21(11):635-643. PubMed ID: 31335200 [No Abstract] [Full Text] [Related]
49. Screening for diabetic retinopathy in diabetic patients with a mydriasis-free, full-field flicker electroretinogram recording device. Zeng Y; Cao D; Yang D; Zhuang X; Yu H; Hu Y; Zhang Y; Yang C; He M; Zhang L Doc Ophthalmol; 2020 Jun; 140(3):211-220. PubMed ID: 31720980 [TBL] [Abstract][Full Text] [Related]
50. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144 [TBL] [Abstract][Full Text] [Related]
51. Assessment of Clinical Metadata on the Accuracy of Retinal Fundus Image Labels in Diabetic Retinopathy in Uganda: Case-Crossover Study Using the Multimodal Database of Retinal Images in Africa. Arunga S; Morley KE; Kwaga T; Morley MG; Nakayama LF; Mwavu R; Kaggwa F; Ssempiira J; Celi LA; Haberer JE; Obua C JMIR Form Res; 2024 Sep; 8():e59914. PubMed ID: 39293049 [TBL] [Abstract][Full Text] [Related]
52. Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening. Rajalakshmi R; Arulmalar S; Usha M; Prathiba V; Kareemuddin KS; Anjana RM; Mohan V PLoS One; 2015; 10(9):e0138285. PubMed ID: 26401839 [TBL] [Abstract][Full Text] [Related]
53. Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis. Bhaskaranand M; Ramachandra C; Bhat S; Cuadros J; Nittala MG; Sadda S; Solanki K J Diabetes Sci Technol; 2016 Feb; 10(2):254-61. PubMed ID: 26888972 [TBL] [Abstract][Full Text] [Related]
55. Automated detection of diabetic retinopathy: results of a screening study. Bouhaimed M; Gibbins R; Owens D Diabetes Technol Ther; 2008 Apr; 10(2):142-8. PubMed ID: 18260777 [TBL] [Abstract][Full Text] [Related]
56. A Diabetic Retinopathy Classification Framework Based on Deep-Learning Analysis of OCT Angiography. Zang P; Hormel TT; Wang X; Tsuboi K; Huang D; Hwang TS; Jia Y Transl Vis Sci Technol; 2022 Jul; 11(7):10. PubMed ID: 35822949 [TBL] [Abstract][Full Text] [Related]
57. Prevalence and predictors of developing vision-threatening diabetic retinopathy within the first three years of type 2 diabetes. Yan J; Li B; Chen Y; Gu C; Dai G; Zhang Q; Zheng Z; Luo D; Zhao S; Zhou C Front Endocrinol (Lausanne); 2023; 14():1305378. PubMed ID: 38192422 [TBL] [Abstract][Full Text] [Related]
58. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Sayres R; Taly A; Rahimy E; Blumer K; Coz D; Hammel N; Krause J; Narayanaswamy A; Rastegar Z; Wu D; Xu S; Barb S; Joseph A; Shumski M; Smith J; Sood AB; Corrado GS; Peng L; Webster DR Ophthalmology; 2019 Apr; 126(4):552-564. PubMed ID: 30553900 [TBL] [Abstract][Full Text] [Related]
59. Automated early detection of diabetic retinopathy. Abràmoff MD; Reinhardt JM; Russell SR; Folk JC; Mahajan VB; Niemeijer M; Quellec G Ophthalmology; 2010 Jun; 117(6):1147-54. PubMed ID: 20399502 [TBL] [Abstract][Full Text] [Related]
60. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Tufail A; Kapetanakis VV; Salas-Vega S; Egan C; Rudisill C; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Bailey C; Sadda S; Taylor P; Rudnicka AR Health Technol Assess; 2016 Dec; 20(92):1-72. PubMed ID: 27981917 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]