These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 29178334)
41. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Colen CB; Shen Y; Ghoddoussi F; Yu P; Francis TB; Koch BJ; Monterey MD; Galloway MP; Sloan AE; Mathupala SP Neoplasia; 2011 Jul; 13(7):620-32. PubMed ID: 21750656 [TBL] [Abstract][Full Text] [Related]
42. Evaluation of recurrent high-grade gliomas treated with bevacizumab: A preliminary report of 3D pseudocontinuous artery spin labeling. Lyu Y; Liu S; You H; Hou B; Wang Y; Ma W; Feng F J Magn Reson Imaging; 2017 Aug; 46(2):565-573. PubMed ID: 27902863 [TBL] [Abstract][Full Text] [Related]
43. Inhibition of mitochondrial carrier homolog 2 (MTCH2) suppresses tumor invasion and enhances sensitivity to temozolomide in malignant glioma. Yuan Q; Yang W; Zhang S; Li T; Zuo M; Zhou X; Li J; Li M; Xia X; Chen M; Liu Y Mol Med; 2021 Jan; 27(1):7. PubMed ID: 33509092 [TBL] [Abstract][Full Text] [Related]
45. Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors. Leung E; Cairns RA; Chaudary N; Vellanki RN; Kalliomaki T; Moriyama EH; Mujcic H; Wilson BC; Wouters BG; Hill R; Milosevic M BMC Cancer; 2017 Jun; 17(1):418. PubMed ID: 28619042 [TBL] [Abstract][Full Text] [Related]
46. Efficacy of bevacizumab therapy in recurrent malignant gliomas in relation to the prior recurrence pattern or tumor location. Matsuda M; Ishikawa E; Yamamoto T; Akutsu H; Takano S; Matsumura A J Clin Neurosci; 2017 Jun; 40():115-119. PubMed ID: 28246006 [TBL] [Abstract][Full Text] [Related]
47. HA1077, a Rho kinase inhibitor, suppresses glioma-induced angiogenesis by targeting the Rho-ROCK and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signal pathways. Nakabayashi H; Shimizu K Cancer Sci; 2011 Feb; 102(2):393-9. PubMed ID: 21166955 [TBL] [Abstract][Full Text] [Related]
48. Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells. Hasan MN; Luo L; Ding D; Song S; Bhuiyan MIH; Liu R; Foley LM; Guan X; Kohanbash G; Hitchens TK; Castro MG; Zhang Z; Sun D Theranostics; 2021; 11(3):1295-1309. PubMed ID: 33391535 [No Abstract] [Full Text] [Related]
49. The overexpression and nuclear translocation of Trx-1 during hypoxia confers on HepG2 cells resistance to DDP, and GL-V9 reverses the resistance by suppressing the Trx-1/Ref-1 axis. Zhao L; Li W; Zhou Y; Zhang Y; Huang S; Xu X; Li Z; Guo Q Free Radic Biol Med; 2015 May; 82():29-41. PubMed ID: 25656992 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. Rodrigues-Silva E; Siqueira-Santos ES; Ruas JS; Ignarro RS; Figueira TR; Rogério F; Castilho RF J Neurooncol; 2017 Jul; 133(3):519-529. PubMed ID: 28540666 [TBL] [Abstract][Full Text] [Related]
51. Lack of evidence for PlGF mediating the tumor resistance after anti-angiogenic therapy in malignant gliomas. Schneider K; Weyerbrock A; Doostkam S; Plate K; Machein MR J Neurooncol; 2015 Jan; 121(2):269-78. PubMed ID: 25370707 [TBL] [Abstract][Full Text] [Related]
52. The ATP synthase inhibition induces an AMPK-dependent glycolytic switch of mesenchymal stem cells that enhances their immunotherapeutic potential. Contreras-Lopez R; Elizondo-Vega R; Luque-Campos N; Torres MJ; Pradenas C; Tejedor G; Paredes-Martínez MJ; Vega-Letter AM; Campos-Mora M; Rigual-Gonzalez Y; Oyarce K; Salgado M; Jorgensen C; Khoury M; Garcia-Robles MLÁ; Altamirano C; Djouad F; Luz-Crawford P Theranostics; 2021; 11(1):445-460. PubMed ID: 33391485 [No Abstract] [Full Text] [Related]
53. Mammalian target of rapamycin complex 1 activation sensitizes human glioma cells to hypoxia-induced cell death. Thiepold AL; Lorenz NI; Foltyn M; Engel AL; Divé I; Urban H; Heller S; Bruns I; Hofmann U; Dröse S; Harter PN; Mittelbronn M; Steinbach JP; Ronellenfitsch MW Brain; 2017 Oct; 140(10):2623-2638. PubMed ID: 28969371 [TBL] [Abstract][Full Text] [Related]
54. Hypoxia conduces the glioma progression by inducing M2 macrophage polarization via elevating TNFSF9 level in a histone-lactylation-dependent manner. Li M; Sun P; Tu B; Deng G; Li D; He W Am J Physiol Cell Physiol; 2024 Aug; 327(2):C487-C504. PubMed ID: 39010835 [TBL] [Abstract][Full Text] [Related]
55. Anti-proliferative effect of Zea mays L. cob extract on rat C6 glioma cells through regulation of glycolysis, mitochondrial ROS, and apoptosis. Hwang E; Sim S; Park SH; Song KD; Lee HK; Heo TH; Jun HS; Kim SJ Biomed Pharmacother; 2018 Feb; 98():726-732. PubMed ID: 29306210 [TBL] [Abstract][Full Text] [Related]
56. Differential effects of PPARgamma agonists on the metabolic properties of gliomas and astrocytes. Spagnolo A; Grant EN; Glick R; Lichtor T; Feinstein DL Neurosci Lett; 2007 Apr; 417(1):72-7. PubMed ID: 17324516 [TBL] [Abstract][Full Text] [Related]
57. Repression of oxidative phosphorylation sensitizes leukemia cell lines to cytarabine. Yucel B; Sonmez M Hematology; 2018 Jul; 23(6):330-336. PubMed ID: 29139328 [TBL] [Abstract][Full Text] [Related]
58. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Ai Z; Lu Y; Qiu S; Fan Z Cancer Lett; 2016 Apr; 373(1):36-44. PubMed ID: 26801746 [TBL] [Abstract][Full Text] [Related]
59. Glut-1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through COMPARE analysis and metabolomic studies. Evans A; Bates V; Troy H; Hewitt S; Holbeck S; Chung YL; Phillips R; Stubbs M; Griffiths J; Airley R Cancer Chemother Pharmacol; 2008 Mar; 61(3):377-93. PubMed ID: 17520257 [TBL] [Abstract][Full Text] [Related]
60. Loss of function of PTEN alters the relationship between glucose concentration and cell proliferation, increases glycolysis, and sensitizes cells to 2-deoxyglucose. Blouin MJ; Zhao Y; Zakikhani M; Algire C; Piura E; Pollak M Cancer Lett; 2010 Mar; 289(2):246-53. PubMed ID: 19744772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]