BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29178403)

  • 1. N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions.
    Marusic C; Pioli C; Stelter S; Novelli F; Lonoce C; Morrocchi E; Benvenuto E; Salzano AM; Scaloni A; Donini M
    Biotechnol Bioeng; 2018 Mar; 115(3):565-576. PubMed ID: 29178403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana.
    Marusic C; Novelli F; Salzano AM; Scaloni A; Benvenuto E; Pioli C; Donini M
    Plant Biotechnol J; 2016 Jan; 14(1):240-51. PubMed ID: 25879373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the Secretion of a Glyco-Engineered Anti-CD20 scFv-Fc Antibody in Hairy Root Cultures.
    Lonoce C; Marusic C; Morrocchi E; Salzano AM; Scaloni A; Novelli F; Pioli C; Feeney M; Frigerio L; Donini M
    Biotechnol J; 2019 Mar; 14(3):e1800081. PubMed ID: 29975457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC.
    Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M
    J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures.
    Lonoce C; Salem R; Marusic C; Jutras PV; Scaloni A; Salzano AM; Lucretti S; Steinkellner H; Benvenuto E; Donini M
    Biotechnol J; 2016 Sep; 11(9):1209-20. PubMed ID: 27313150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Fc Double-Engineered CD20 Antibody with Enhanced Ability to Trigger Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity.
    Wirt T; Rosskopf S; Rösner T; Eichholz KM; Kahrs A; Lutz S; Kretschmer A; Valerius T; Klausz K; Otte A; Gramatzki M; Peipp M; Kellner C
    Transfus Med Hemother; 2017 Sep; 44(5):292-300. PubMed ID: 29070974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.
    Li J; Stoddard TJ; Demorest ZL; Lavoie PO; Luo S; Clasen BM; Cedrone F; Ray EE; Coffman AP; Daulhac A; Yabandith A; Retterath AJ; Mathis L; Voytas DF; D'Aoust MA; Zhang F
    Plant Biotechnol J; 2016 Feb; 14(2):533-42. PubMed ID: 26011187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Glycan Engineering via the Mannosidase I Inhibitor (Kifunensine) Improves Efficacy of Rituximab Manufactured in
    Kommineni V; Markert M; Ren Z; Palle S; Carrillo B; Deng J; Tejeda A; Nandi S; McDonald KA; Marcel S; Holtz B
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30621113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of different glycosylation variants of the tumour-targeting mAb H10 in Nicotiana benthamiana: influence on expression yield and antibody degradation.
    Lombardi R; Donini M; Villani ME; Brunetti P; Fujiyama K; Kajiura H; Paul M; Ma JK; Benvenuto E
    Transgenic Res; 2012 Oct; 21(5):1005-21. PubMed ID: 22238065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of amino acid substitutions on the biological activity of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori).
    Aoyama M; Tada M; Tatematsu KI; Hashii N; Sezutsu H; Ishii-Watabe A
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2633-2638. PubMed ID: 30119885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies.
    Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A
    MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism.
    Niwa R; Hatanaka S; Shoji-Hosaka E; Sakurada M; Kobayashi Y; Uehara A; Yokoi H; Nakamura K; Shitara K
    Clin Cancer Res; 2004 Sep; 10(18 Pt 1):6248-55. PubMed ID: 15448014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.
    Strasser R; Stadlmann J; Schähs M; Stiegler G; Quendler H; Mach L; Glössl J; Weterings K; Pabst M; Steinkellner H
    Plant Biotechnol J; 2008 May; 6(4):392-402. PubMed ID: 18346095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies.
    Robak T; Robak E
    BioDrugs; 2011 Feb; 25(1):13-25. PubMed ID: 21090841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly potent anti-CD20-RLI immunocytokine targeting established human B lymphoma in SCID mouse.
    Vincent M; Teppaz G; Lajoie L; Solé V; Bessard A; Maillasson M; Loisel S; Béchard D; Clémenceau B; Thibault G; Garrigue-Antar L; Jacques Y; Quéméner A
    MAbs; 2014; 6(4):1026-37. PubMed ID: 25072059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose.
    Jansing J; Sack M; Augustine SM; Fischer R; Bortesi L
    Plant Biotechnol J; 2019 Feb; 17(2):350-361. PubMed ID: 29969180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effector function of therapeutic antibodies.
    Cheng ZJ; Garvin D; Paguio A; Moravec R; Engel L; Fan F; Surowy T
    J Immunol Methods; 2014 Dec; 414():69-81. PubMed ID: 25086226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled glycosylation of therapeutic antibodies in plants.
    Tekoah Y; Ko K; Koprowski H; Harvey DJ; Wormald MR; Dwek RA; Rudd PM
    Arch Biochem Biophys; 2004 Jun; 426(2):266-78. PubMed ID: 15158677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus.
    He J; Lai H; Engle M; Gorlatov S; Gruber C; Steinkellner H; Diamond MS; Chen Q
    PLoS One; 2014; 9(3):e93541. PubMed ID: 24675995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II.
    Ferrara C; Brünker P; Suter T; Moser S; Püntener U; Umaña P
    Biotechnol Bioeng; 2006 Apr; 93(5):851-61. PubMed ID: 16435400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.