These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29178412)

  • 1. Temperature-Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols.
    Ni J; Gao YY; Tao F; Liu HY; Xu P
    Angew Chem Int Ed Engl; 2018 Jan; 57(5):1214-1217. PubMed ID: 29178412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics.
    Ni J; Wu YT; Tao F; Peng Y; Xu P
    J Am Chem Soc; 2018 Nov; 140(47):16001-16005. PubMed ID: 30376327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.
    Kunjapur AM; Tarasova Y; Prather KL
    J Am Chem Soc; 2014 Aug; 136(33):11644-54. PubMed ID: 25076127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered
    Kim HS; Choi JA; Kim BY; Ferrer L; Choi JM; Wendisch VF; Lee JH
    Front Bioeng Biotechnol; 2022; 10():880277. PubMed ID: 35646884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of Lignin-Related Aromatic Alcohols by Cell Suspensions of Methylosinus trichosporium.
    Mountfort DO; White D; Asher RA
    Appl Environ Microbiol; 1990 Jan; 56(1):245-9. PubMed ID: 16348098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of four Rhodococcus alcohol dehydrogenase genes responsible for the oxidation of aromatic alcohols.
    Peng X; Taki H; Komukai S; Sekine M; Kanoh K; Kasai H; Choi SK; Omata S; Tanikawa S; Harayama S; Misawa N
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):824-32. PubMed ID: 16292529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation.
    Costa MA; Bedgar DL; Moinuddin SG; Kim KW; Cardenas CL; Cochrane FC; Shockey JM; Helms GL; Amakura Y; Takahashi H; Milhollan JK; Davin LB; Browse J; Lewis NG
    Phytochemistry; 2005 Sep; 66(17):2072-91. PubMed ID: 16099486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of alcohols and reduction of aldehydes derived from methyl- and dimethylpyrenes by cDNA-expressed human alcohol dehydrogenases.
    Kollock R; Frank H; Seidel A; Meinl W; Glatt H
    Toxicology; 2008 Mar; 245(1-2):65-75. PubMed ID: 18242813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by Candida guilliermondii.
    Cortez DV; Roberto IC
    Bioresour Technol; 2010 Mar; 101(6):1858-65. PubMed ID: 19822420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids.
    Peng X; Shindo K; Kanoh K; Inomata Y; Choi SK; Misawa N
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):141-50. PubMed ID: 15812642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable production of catechol derivatives from waste tung nutshell C/G-type lignin
    Zhu G; Xie H; Ye D; Zhang J; Huang K; Liao B; Chen J
    RSC Adv; 2024 Feb; 14(8):5069-5076. PubMed ID: 38332785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry.
    Ribeaucourt D; Bissaro B; Lambert F; Lafond M; Berrin JG
    Biotechnol Adv; 2022; 56():107787. PubMed ID: 34147589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in artificial enzyme cascades for the production of value-added chemicals.
    Wang Z; Sundara Sekar B; Li Z
    Bioresour Technol; 2021 Mar; 323():124551. PubMed ID: 33360113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in biotechnological applications of alcohol dehydrogenases.
    Zheng YG; Yin HH; Yu DF; Chen X; Tang XL; Zhang XJ; Xue YP; Wang YJ; Liu ZQ
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):987-1001. PubMed ID: 28074225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas as Versatile Aromatics Cell Factory.
    Schwanemann T; Otto M; Wierckx N; Wynands B
    Biotechnol J; 2020 Nov; 15(11):e1900569. PubMed ID: 32978889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient conversion of aromatic and phenylpropanoid alcohols to acids by the cascade biocatalysis of alcohol and aldehyde dehydrogenases.
    Qiu Z; Liu X; Yu J; Zhao Y; Zhao GR; Li S; Liu K; Du L; Ma L
    Synth Syst Biotechnol; 2024 Jun; 9(2):187-195. PubMed ID: 38385148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects.
    Tarabanko VE; Tarabanko N
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29140301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaldehydes and beyond: Expanding the realm of bioderived chemicals using biogenic aldehydes as platforms.
    Zhou J; Chen Z; Wang Y
    Curr Opin Chem Biol; 2020 Dec; 59():37-46. PubMed ID: 32454426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic Oxidative Cleavage of C(OH)-C Bonds to Produce Aromatic Aldehydes Catalyzed by Cu
    Zhao Z; Zhang Z; Meng Q; Chen B; Song J; Liu H; Han B
    ChemSusChem; 2023 Sep; 16(18):e202300373. PubMed ID: 37258454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of L-alanine for redox self-sufficient amination of alcohols.
    Klatte S; Wendisch VF
    Microb Cell Fact; 2015 Jan; 14():9. PubMed ID: 25612558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.