These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 29178450)
1. Generic approach to the method development of intact protein separations using hydrophobic interaction chromatography. Tyteca E; De Vos J; Tassi M; Cook K; Liu X; Kaal E; Eeltink S J Sep Sci; 2018 Mar; 41(5):1017-1024. PubMed ID: 29178450 [TBL] [Abstract][Full Text] [Related]
2. Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins. Tyteca E; De Vos J; Vankova N; Cesla P; Desmet G; Eeltink S J Sep Sci; 2016 Apr; 39(7):1249-57. PubMed ID: 26829155 [TBL] [Abstract][Full Text] [Related]
3. Advancing HIC method development: Retention-time modeling and tuning selectivity with ternary mobile-phase systems. Ewonde Ewonde R; Molenaar SRA; Broeckhoven K; Eeltink S J Chromatogr A; 2024 Aug; 1730():465133. PubMed ID: 38996515 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms. van Schaick G; Pirok BWJ; Haselberg R; Somsen GW; Gargano AFG J Chromatogr A; 2019 Aug; 1598():67-76. PubMed ID: 31104847 [TBL] [Abstract][Full Text] [Related]
5. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography. Kensert A; Collaerts G; Efthymiadis K; Desmet G; Cabooter D J Chromatogr A; 2021 Feb; 1638():461900. PubMed ID: 33485027 [TBL] [Abstract][Full Text] [Related]
6. Possibilities of retention modeling and computer assisted method development in supercritical fluid chromatography. Tyteca E; Desfontaine V; Desmet G; Guillarme D J Chromatogr A; 2015 Feb; 1381():219-28. PubMed ID: 25601318 [TBL] [Abstract][Full Text] [Related]
7. Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. Vaast A; Tyteca E; Desmet G; Schoenmakers PJ; Eeltink S J Chromatogr A; 2014 Aug; 1355():149-57. PubMed ID: 24986072 [TBL] [Abstract][Full Text] [Related]
8. Retention modeling and method development in hydrophilic interaction chromatography. Tyteca E; Périat A; Rudaz S; Desmet G; Guillarme D J Chromatogr A; 2014 Apr; 1337():116-27. PubMed ID: 24613041 [TBL] [Abstract][Full Text] [Related]
9. Probing selectivity of mixed-mode reversed-phase/weak-anion-exchange liquid chromatography to advance method development. Dores-Sousa JL; De Vos J; Kok WT; Eeltink S J Chromatogr A; 2018 Oct; 1570():75-81. PubMed ID: 30077460 [TBL] [Abstract][Full Text] [Related]
10. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
11. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography. Kensert A; Desmet G; Cabooter D J Chromatogr A; 2024 Jan; 1713():464570. PubMed ID: 38101304 [TBL] [Abstract][Full Text] [Related]
12. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
13. Applicability of retention modelling in hydrophilic-interaction liquid chromatography for algorithmic optimization programs with gradient-scanning techniques. Pirok BWJ; Molenaar SRA; van Outersterp RE; Schoenmakers PJ J Chromatogr A; 2017 Dec; 1530():104-111. PubMed ID: 29146427 [TBL] [Abstract][Full Text] [Related]
14. Optimization of non-linear gradient in hydrophobic interaction chromatography for the analytical characterization of antibody-drug conjugates. Bobály B; Randazzo GM; Rudaz S; Guillarme D; Fekete S J Chromatogr A; 2017 Jan; 1481():82-91. PubMed ID: 28017562 [TBL] [Abstract][Full Text] [Related]
16. Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography. Gika H; Theodoridis G; Mattivi F; Vrhovsek U; Pappa-Louisi A J Sep Sci; 2012 Feb; 35(3):376-83. PubMed ID: 22228618 [TBL] [Abstract][Full Text] [Related]
17. Combination of linear solvent strength model and quantitative structure-retention relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography. Baczek T; Kaliszan R J Chromatogr A; 2002 Jul; 962(1-2):41-55. PubMed ID: 12198971 [TBL] [Abstract][Full Text] [Related]
18. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength. Wolcott RG; Dolan JW; Snyder LR J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221 [TBL] [Abstract][Full Text] [Related]
19. On the inherent data fitting problems encountered in modeling retention behavior of analytes with dual retention mechanism. Tyteca E; Desmet G J Chromatogr A; 2015 Jul; 1403():81-95. PubMed ID: 26044381 [TBL] [Abstract][Full Text] [Related]
20. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. III. Separation mechanism and gradient optimization. Mengerink Y; Peters R; van der Wal S; Claessens HA; Cramers CA J Chromatogr A; 2002 Mar; 949(1-2):307-26. PubMed ID: 11999748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]