BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29178580)

  • 1. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases.
    Schoborg JA; Hershewe JM; Stark JC; Kightlinger W; Kath JE; Jaroentomeechai T; Natarajan A; DeLisa MP; Jewett MC
    Biotechnol Bioeng; 2018 Mar; 115(3):739-750. PubMed ID: 29178580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitute sweeteners: diverse bacterial oligosaccharyltransferases with unique N-glycosylation site preferences.
    Ollis AA; Chai Y; Natarajan A; Perregaux E; Jaroentomeechai T; Guarino C; Smith J; Zhang S; DeLisa MP
    Sci Rep; 2015 Oct; 5():15237. PubMed ID: 26482295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the efficiency of diverse N-linking oligosaccharyltransferases for glycoengineering using a standardised cell-free assay.
    Lehri B; Atkins E; Scott TA; Abouelhadid S; Wren BW; Cuccui J
    Microb Biotechnol; 2024 Jun; 17(6):e14480. PubMed ID: 38858807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements.
    Ielmini MV; Feldman MF
    Glycobiology; 2011 Jun; 21(6):734-42. PubMed ID: 21098514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB.
    Ihssen J; Kowarik M; Wiesli L; Reiss R; Wacker M; Thöny-Meyer L
    BMC Biotechnol; 2012 Sep; 12():67. PubMed ID: 23006740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved DGGK motif is essential for the function of the PglB oligosaccharyltransferase from Campylobacter jejuni.
    Barre Y; Nothaft H; Thomas C; Liu X; Li J; Ng KKS; Szymanski CM
    Glycobiology; 2017 Oct; 27(10):978-989. PubMed ID: 28922740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GlycoSNAP: A High-Throughput Screening Methodology for Engineering Designer Glycosylation Enzymes.
    Ollis AA; Chai Y; DeLisa MP
    Methods Mol Biol; 2015; 1321():37-47. PubMed ID: 26082213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering.
    Ihssen J; Haas J; Kowarik M; Wiesli L; Wacker M; Schwede T; Thöny-Meyer L
    Open Biol; 2015 Apr; 5(4):140227. PubMed ID: 25833378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Bacterial Oligosaccharyltransferase Structure Elucidation and Potential Application to Glycoconjugate Vaccine Design.
    Lu R; Li P; Zhu L; Chang MX; Ouyang S
    Front Biosci (Landmark Ed); 2023 Nov; 28(11):305. PubMed ID: 38062836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A catalytically essential motif in external loop 5 of the bacterial oligosaccharyltransferase PglB.
    Lizak C; Gerber S; Zinne D; Michaud G; Schubert M; Chen F; Bucher M; Darbre T; Zenobi R; Reymond JL; Locher KP
    J Biol Chem; 2014 Jan; 289(2):735-46. PubMed ID: 24275651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pipeline for Studying and Engineering Single-Subunit Oligosaccharyltransferases.
    Jaroentomeechai T; Zheng X; Hershewe J; Stark JC; Jewett MC; DeLisa MP
    Methods Enzymol; 2017; 597():55-81. PubMed ID: 28935112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis.
    Lu H; Fermaintt CS; Cherepanova NA; Gilmore R; Yan N; Lehrman MA
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9557-9562. PubMed ID: 30181269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation.
    Lizak C; Gerber S; Michaud G; Schubert M; Fan YY; Bucher M; Darbre T; Aebi M; Reymond JL; Locher KP
    Nat Commun; 2013; 4():2627. PubMed ID: 24149797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo.
    Schwarz F; Lizak C; Fan YY; Fleurkens S; Kowarik M; Aebi M
    Glycobiology; 2011 Jan; 21(1):45-54. PubMed ID: 20847188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases.
    Tavares-Carreón F; Fathy Mohamed Y; Andrade A; Valvano MA
    Glycobiology; 2016 Mar; 26(3):286-300. PubMed ID: 26515403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase.
    Napiórkowska M; Boilevin J; Sovdat T; Darbre T; Reymond JL; Aebi M; Locher KP
    Nat Struct Mol Biol; 2017 Dec; 24(12):1100-1106. PubMed ID: 29058712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting
    Cain JA; Dale AL; Cordwell SJ
    J Proteome Res; 2021 Nov; 20(11):4995-5009. PubMed ID: 34677046
    [No Abstract]   [Full Text] [Related]  

  • 18. Structural Basis of Protein Asn-Glycosylation by Oligosaccharyltransferases.
    Kohda D
    Adv Exp Med Biol; 2018; 1104():171-199. PubMed ID: 30484249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity.
    Ollis AA; Zhang S; Fisher AC; DeLisa MP
    Nat Chem Biol; 2014 Oct; 10(10):816-22. PubMed ID: 25129029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing a Cell-Free Glycoprotein Synthesis System for Enzymatic
    DeWinter MA; Wong DA; Fernandez R; Kightlinger W; Thames AH; DeLisa MP; Jewett MC
    ACS Chem Biol; 2024 Jun; ():. PubMed ID: 38934647
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.