BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29178634)

  • 1. Two Distinct Substrate Binding Modes for the Normal and Reverse Prenylation of Hapalindoles by the Prenyltransferase AmbP3.
    Wong CP; Awakawa T; Nakashima Y; Mori T; Zhu Q; Liu X; Abe I
    Angew Chem Int Ed Engl; 2018 Jan; 57(2):560-563. PubMed ID: 29178634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into a novel indole prenyltransferase in hapalindole-type alkaloid biosynthesis.
    Wang J; Chen CC; Yang Y; Liu W; Ko TP; Shang N; Hu X; Xie Y; Huang JW; Zhang Y; Guo RT
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1782-1788. PubMed ID: 29229390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Basis of Tryptophan Reverse N-Prenylation Catalyzed by CymD.
    Roose BW; Christianson DW
    Biochemistry; 2019 Jul; 58(30):3232-3242. PubMed ID: 31251043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Insight into the Mg
    Awakawa T; Mori T; Nakashima Y; Zhai R; Wong CP; Hillwig ML; Liu X; Abe I
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6810-6813. PubMed ID: 29677386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinvestigation of the substrate specificity of a reverse prenyltransferase NotF from Aspergillus sp. MF297-2.
    Yang K; Li SM; Liu X; Fan A
    Arch Microbiol; 2020 Aug; 202(6):1419-1424. PubMed ID: 32185409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation mutagenesis on Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 results in mutants with strongly increased C3-prenylating activity.
    Zhou K; Zhao W; Liu XQ; Li SM
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9943-9953. PubMed ID: 27311563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary Flavonoid Prenylations by Fungal Indole Prenyltransferases.
    Zhou K; Yu X; Xie X; Li SM
    J Nat Prod; 2015 Sep; 78(9):2229-35. PubMed ID: 26294262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential rearrangements in the reaction catalyzed by the indole prenyltransferase FtmPT1.
    Mahmoodi N; Tanner ME
    Chembiochem; 2013 Oct; 14(15):2029-37. PubMed ID: 24014462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of a 6-dimethylallyltryptophan synthase, IptA: Insights into substrate tolerance and enhancement of prenyltransferase activity.
    Suemune H; Nishimura D; Mizutani K; Sato Y; Hino T; Takagi H; Shiozaki-Sato Y; Takahashi S; Nagano S
    Biochem Biophys Res Commun; 2022 Feb; 593():144-150. PubMed ID: 35074664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different behaviors of cyclic dipeptide prenyltransferases toward the tripeptide derivative ardeemin fumiquinazoline and its enantiomer.
    Mai P; Coby L; Li SM
    Appl Microbiol Biotechnol; 2019 May; 103(9):3773-3781. PubMed ID: 30863875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine O-prenyltransferase SirD catalyzes S-, C-, and N-prenylations on tyrosine and tryptophan derivatives.
    Rudolf JD; Poulter CD
    ACS Chem Biol; 2013 Dec; 8(12):2707-14. PubMed ID: 24083562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies on the indole prenyltransferases.
    Tanner ME
    Nat Prod Rep; 2015 Jan; 32(1):88-101. PubMed ID: 25270661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Basis of Substrate Promiscuity and Catalysis by the Reverse Prenyltransferase
    Eaton SA; Ronnebaum TA; Roose BW; Christianson DW
    Biochemistry; 2022 Sep; 61(18):2025-2035. PubMed ID: 36084241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-Dependent Alteration in the C- and O-Prenylation Specificities of Cannabis Prenyltransferase.
    Tanaya R; Kodama T; Maneenet J; Yasuno Y; Nakayama A; Shinada T; Takahashi H; Ito T; Morita H; Awale S; Taura F
    Biol Pharm Bull; 2024; 47(2):449-453. PubMed ID: 38369346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases.
    Mori T; Zhang L; Awakawa T; Hoshino S; Okada M; Morita H; Abe I
    Nat Commun; 2016 Mar; 7():10849. PubMed ID: 26952246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic formation of a prenyl β-carboline by a fungal indole prenyltransferase.
    Hamdy SA; Kodama T; Nakashima Y; Han X; Matsui T; Morita H
    J Nat Med; 2022 Sep; 76(4):873-879. PubMed ID: 35767141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprogramming Substrate and Catalytic Promiscuity of Tryptophan Prenyltransferases.
    Ostertag E; Zheng L; Broger K; Stehle T; Li SM; Zocher G
    J Mol Biol; 2021 Jan; 433(2):166726. PubMed ID: 33249189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases.
    Yu X; Xie X; Li SM
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):737-48. PubMed ID: 21643703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two Prenyltransferases Govern a Consecutive Prenylation Cascade in the Biosynthesis of Echinulin and Neoechinulin.
    Wohlgemuth V; Kindinger F; Xie X; Wang BG; Li SM
    Org Lett; 2017 Nov; 19(21):5928-5931. PubMed ID: 29072465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GuA6DT, a regiospecific prenyltransferase from Glycyrrhiza uralensis, catalyzes the 6-prenylation of flavones.
    Li J; Chen R; Wang R; Liu X; Xie D; Zou J; Dai J
    Chembiochem; 2014 Jul; 15(11):1673-81. PubMed ID: 25044857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.