These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29178780)

  • 1. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.
    Dhama R; Caligiuri V; Petti L; Rashed AR; Rippa M; Lento R; Termine R; Caglayan H; De Luca A
    ACS Nano; 2018 Jan; 12(1):504-512. PubMed ID: 29178780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals.
    Chanda D; Shigeta K; Truong T; Lui E; Mihi A; Schulmerich M; Braun PV; Bhargava R; Rogers JA
    Nat Commun; 2011 Sep; 2():479. PubMed ID: 21934663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field surface plasmons on quasicrystal metasurfaces.
    Yang Q; Zhang X; Li S; Xu Q; Singh R; Liu Y; Li Y; Kruk SS; Gu J; Han J; Zhang W
    Sci Rep; 2016 Dec; 6(1):26. PubMed ID: 28442721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities.
    Li L; Cai W; Du C; Guan Z; Xiang Y; Ma Z; Wu W; Ren M; Zhang X; Tang A; Xu J
    Nanoscale; 2018 Dec; 10(47):22357-22361. PubMed ID: 30474670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPP standing waves within plasmonic nanocavities.
    Yang DJ; Ding SJ; Ma L; Mu QX; Wang QQ
    Opt Express; 2022 Nov; 30(24):44055-44070. PubMed ID: 36523089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities.
    Biris CG; Panoiu NC
    Opt Express; 2010 Aug; 18(16):17165-79. PubMed ID: 20721105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.
    Fan JR; Wu WG; Chen ZJ; Zhu J; Li J
    Nanoscale; 2017 Mar; 9(10):3416-3423. PubMed ID: 28009895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Plasmonic Infrared Multiple-Channel Filter Based on Gold Composite Nanocavities Metasurface.
    Zhang J; Yu X; Dong J; Yang W; Liu S; Shen C; Duan J; Deng X
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of high Q-factor metallic nanocavities using plasmonic bandgaps.
    Ee HS; Park HG; Kim SK
    Appl Opt; 2016 Feb; 55(5):1029-33. PubMed ID: 26906371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum.
    Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J
    Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic modes of extreme subwavelength nanocavities.
    Petschulat J; Helgert C; Steinert M; Bergner N; Rockstuhl C; Lederer F; Pertsch T; Tünnermann A; Kley EB
    Opt Lett; 2010 Aug; 35(16):2693-5. PubMed ID: 20717426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities.
    López-Ortega A; Zapata-Herrera M; Maccaferri N; Pancaldi M; Garcia M; Chuvilin A; Vavassori P
    Light Sci Appl; 2020; 9():49. PubMed ID: 32257180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering.
    Aspetti CO; Agarwal R
    J Phys Chem Lett; 2014 Nov; 5(21):3768-3780. PubMed ID: 25396030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities.
    Sonnefraud Y; Verellen N; Sobhani H; Vandenbosch GA; Moshchalkov VV; Van Dorpe P; Nordlander P; Maier SA
    ACS Nano; 2010 Mar; 4(3):1664-70. PubMed ID: 20155967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-Wettable Open Plasmonic Nanocavities for Ultrasensitive Molecular Detections in Multiple Phases.
    Whang K; Jo Y; Lee H; Kim D; Kang T
    Nano Lett; 2021 Jul; 21(14):6194-6201. PubMed ID: 34254801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing Nanostructures through Plasmon Polarimetry.
    Kleemann ME; Mertens J; Zheng X; Cormier S; Turek V; Benz F; Chikkaraddy R; Deacon W; Lombardi A; Moshchalkov VV; Vandenbosch GA; Baumberg JJ
    ACS Nano; 2017 Jan; 11(1):850-855. PubMed ID: 27983796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities.
    Kim J; Liu G; Lu Y; Lee L
    Opt Express; 2005 Oct; 13(21):8332-8. PubMed ID: 19498862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.