BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29178798)

  • 1. Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics.
    Lee YK; Yu KJ; Song E; Barati Farimani A; Vitale F; Xie Z; Yoon Y; Kim Y; Richardson A; Luan H; Wu Y; Xie X; Lucas TH; Crawford K; Mei Y; Feng X; Huang Y; Litt B; Aluru NR; Yin L; Rogers JA
    ACS Nano; 2017 Dec; 11(12):12562-12572. PubMed ID: 29178798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.
    Hwang SW; Park G; Edwards C; Corbin EA; Kang SK; Cheng H; Song JK; Kim JH; Yu S; Ng J; Lee JE; Kim J; Yee C; Bhaduri B; Su Y; Omennetto FG; Huang Y; Bashir R; Goddard L; Popescu G; Lee KM; Rogers JA
    ACS Nano; 2014 Jun; 8(6):5843-51. PubMed ID: 24684516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics.
    Wang L; Gao Y; Dai F; Kong D; Wang H; Sun P; Shi Z; Sheng X; Xu B; Yin L
    ACS Appl Mater Interfaces; 2019 May; 11(19):18013-18023. PubMed ID: 31010291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.
    Kang SK; Park G; Kim K; Hwang SW; Cheng H; Shin J; Chung S; Kim M; Yin L; Lee JC; Lee KM; Rogers JA
    ACS Appl Mater Interfaces; 2015 May; 7(17):9297-305. PubMed ID: 25867894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.
    Hwang SW; Lee CH; Cheng H; Jeong JW; Kang SK; Kim JH; Shin J; Yang J; Liu Z; Ameer GA; Huang Y; Rogers JA
    Nano Lett; 2015 May; 15(5):2801-8. PubMed ID: 25706246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 25th anniversary article: materials for high-performance biodegradable semiconductor devices.
    Hwang SW; Park G; Cheng H; Song JK; Kang SK; Yin L; Kim JH; Omenetto FG; Huang Y; Lee KM; Rogers JA
    Adv Mater; 2014 Apr; 26(13):1992-2000. PubMed ID: 24677058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and Chemistry of Hydrolysis of Ultrathin, Thermally Grown Layers of Silicon Oxide as Biofluid Barriers in Flexible Electronic Systems.
    Lee YK; Yu KJ; Kim Y; Yoon Y; Xie Z; Song E; Luan H; Feng X; Huang Y; Rogers JA
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42633-42638. PubMed ID: 29178781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.
    Fang H; Zhao J; Yu KJ; Song E; Farimani AB; Chiang CH; Jin X; Xue Y; Xu D; Du W; Seo KJ; Zhong Y; Yang Z; Won SM; Fang G; Choi SW; Chaudhuri S; Huang Y; Alam MA; Viventi J; Aluru NR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11682-11687. PubMed ID: 27791052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosafe, Eco-Friendly Levan Polysaccharide toward Transient Electronics.
    Kwon KY; Lee JS; Ko GJ; Sunwoo SH; Lee S; Jo YJ; Choi CH; Hwang SW; Kim TI
    Small; 2018 Aug; 14(32):e1801332. PubMed ID: 29974639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin, Transferred Layers of Silicon Oxynitrides as Tunable Biofluid Barriers for Bioresorbable Electronic Systems.
    Hu Z; Zhao J; Guo H; Li R; Wu M; Shen J; Wang Y; Qiao Z; Xu Y; Haugstad G; An D; Xie Z; Kandela I; Nandoliya KR; Chen Y; Yu Y; Yuan Q; Hou J; Deng Y; AlDubayan AH; Yang Q; Zeng L; Lu D; Koo J; Bai W; Song E; Yao S; Wolverton C; Huang Y; Rogers JA
    Adv Mater; 2024 Apr; 36(15):e2307782. PubMed ID: 38303684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics.
    Yin L; Farimani AB; Min K; Vishal N; Lam J; Lee YK; Aluru NR; Rogers JA
    Adv Mater; 2015 Mar; 27(11):1857-64. PubMed ID: 25626856
    [No Abstract]   [Full Text] [Related]  

  • 13. Ultrathin, Transferred Layers of Metal Silicide as Faradaic Electrical Interfaces and Biofluid Barriers for Flexible Bioelectronic Implants.
    Li J; Li R; Du H; Zhong Y; Chen Y; Nan K; Won SM; Zhang J; Huang Y; Rogers JA
    ACS Nano; 2019 Jan; 13(1):660-670. PubMed ID: 30608642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.
    Giuliani JR; Harley SJ; Carter RS; Power PP; Augustine MP
    Solid State Nucl Magn Reson; 2007 Aug; 32(1):1-10. PubMed ID: 17611084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials for programmed, functional transformation in transient electronic systems.
    Hwang SW; Kang SK; Huang X; Brenckle MA; Omenetto FG; Rogers JA
    Adv Mater; 2015 Jan; 27(1):47-52. PubMed ID: 25357247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems.
    Song E; Li R; Jin X; Du H; Huang Y; Zhang J; Xia Y; Fang H; Lee YK; Yu KJ; Chang JK; Mei Y; Alam MA; Huang Y; Rogers JA
    ACS Nano; 2018 Oct; 12(10):10317-10326. PubMed ID: 30281278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics.
    Phan HP; Zhong Y; Nguyen TK; Park Y; Dinh T; Song E; Vadivelu RK; Masud MK; Li J; Shiddiky MJA; Dao D; Yamauchi Y; Rogers JA; Nguyen NT
    ACS Nano; 2019 Oct; 13(10):11572-11581. PubMed ID: 31433939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient, biocompatible electronics and energy harvesters based on ZnO.
    Dagdeviren C; Hwang SW; Su Y; Kim S; Cheng H; Gur O; Haney R; Omenetto FG; Huang Y; Rogers JA
    Small; 2013 Oct; 9(20):3398-404. PubMed ID: 23606533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.
    Li J; Song E; Chiang CH; Yu KJ; Koo J; Du H; Zhong Y; Hill M; Wang C; Zhang J; Chen Y; Tian L; Zhong Y; Fang G; Viventi J; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9542-E9549. PubMed ID: 30228119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity.
    Erogbogbo F; Lin T; Tucciarone PM; LaJoie KM; Lai L; Patki GD; Prasad PN; Swihart MT
    Nano Lett; 2013 Feb; 13(2):451-6. PubMed ID: 23317111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.