These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29178798)

  • 21. Silicon electronics on silk as a path to bioresorbable, implantable devices.
    Kim DH; Kim YS; Amsden J; Panilaitis B; Kaplan DL; Omenetto FG; Zakin MR; Rogers JA
    Appl Phys Lett; 2009 Sep; 95(13):133701. PubMed ID: 20145699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient Light-Emitting Diodes Constructed from Semiconductors and Transparent Conductors that Biodegrade Under Physiological Conditions.
    Lu D; Liu TL; Chang JK; Peng D; Zhang Y; Shin J; Hang T; Bai W; Yang Q; Rogers JA
    Adv Mater; 2019 Oct; 31(42):e1902739. PubMed ID: 31489737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Small-sized silicon nanoparticles: new nanolights and nanocatalysts.
    Kang Z; Liu Y; Lee ST
    Nanoscale; 2011 Mar; 3(3):777-91. PubMed ID: 21161100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Materials and processing approaches for foundry-compatible transient electronics.
    Chang JK; Fang H; Bower CA; Song E; Yu X; Rogers JA
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5522-E5529. PubMed ID: 28652373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation.
    Lin SW; Chen DH
    Small; 2009 Jan; 5(1):72-6. PubMed ID: 18985673
    [No Abstract]   [Full Text] [Related]  

  • 26. Enabling Transient Electronics with Degradation on Demand via Light-Responsive Encapsulation of a Hydrogel-Oxide Bilayer.
    Zhong S; Ji X; Song L; Zhang Y; Zhao R
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36171-36176. PubMed ID: 30272434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silicon impurity release and surface transformation of TiO2 anatase and rutile nanoparticles in water environments.
    Liu X; Chen G; Erwin JG; Su C
    Environ Pollut; 2014 Jan; 184():570-8. PubMed ID: 24184379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals.
    McVey BF; Tilley RD
    Acc Chem Res; 2014 Oct; 47(10):3045-51. PubMed ID: 25252604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoassisted tuning of silicon nanocrystal photoluminescence.
    Choi J; Wang NS; Reipa V
    Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes.
    Nguyen HM; Seitz O; Peng W; Gartstein YN; Chabal YJ; Malko AV
    ACS Nano; 2012 Jun; 6(6):5574-82. PubMed ID: 22584256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Materials for bioresorbable radio frequency electronics.
    Hwang SW; Huang X; Seo JH; Song JK; Kim S; Hage-Ali S; Chung HJ; Tao H; Omenetto FG; Ma Z; Rogers JA
    Adv Mater; 2013 Jul; 25(26):3526-31. PubMed ID: 23681956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport processes at alpha-quartz-water interfaces: insights from first-principles molecular dynamics simulations.
    Adeagbo WA; Doltsinis NL; Klevakina K; Renner J
    Chemphyschem; 2008 May; 9(7):994-1002. PubMed ID: 18404743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective functionalization of the internal and the external surfaces of mesoporous silicon by liquid masking.
    Wu CC; Sailor MJ
    ACS Nano; 2013 Apr; 7(4):3158-67. PubMed ID: 23451853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Schottky contact on ultra-thin silicon nanomembranes under light illumination.
    Song E; Si W; Cao R; Feng P; Mönch I; Huang G; Di Z; Schmidt OG; Mei Y
    Nanotechnology; 2014 Dec; 25(48):485201. PubMed ID: 25380078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecules on si: electronics with chemistry.
    Vilan A; Yaffe O; Biller A; Salomon A; Kahn A; Cahen D
    Adv Mater; 2010 Jan; 22(2):140-59. PubMed ID: 20217681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics.
    Sun L; Qin G; Seo JH; Celler GK; Zhou W; Ma Z
    Small; 2010 Nov; 6(22):2553-7. PubMed ID: 20878631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium.
    Wang H; Tian J; Lu B; Xie Y; Sun P; Yin L; Wang Y; Sheng X
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Encapsulation of Solid Dispersion in Solid Lipid Particles for Dissolution Enhancement of Poorly Water-Soluble Drug.
    My Tran KT; Vo TV; Lee BJ; Duan W; Ha-Lien Tran P; Truong-Dinh Tran T
    Curr Drug Deliv; 2018; 15(4):576-584. PubMed ID: 28595530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioresorbable Silicon Nanomembranes and Iron Catalyst Nanoparticles for Flexible, Transient Electrochemical Dopamine Monitors.
    Kim HS; Yang SM; Jang TM; Oh N; Kim HS; Hwang SW
    Adv Healthc Mater; 2018 Dec; 7(24):e1801071. PubMed ID: 30450726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.