BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 29178818)

  • 1. Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Networks.
    Martinez-Pastor M; Tonner PD; Darnell CL; Schmid AK
    Annu Rev Genet; 2017 Nov; 51():143-170. PubMed ID: 29178818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems biology approaches to defining transcription regulatory networks in halophilic archaea.
    Darnell CL; Schmid AK
    Methods; 2015 Sep; 86():102-14. PubMed ID: 25976837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription Regulation in Archaea.
    Gehring AM; Walker JE; Santangelo TJ
    J Bacteriol; 2016 Jul; 198(14):1906-1917. PubMed ID: 27137495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription regulation in the third domain.
    Karr EA
    Adv Appl Microbiol; 2014; 89():101-33. PubMed ID: 25131401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea.
    Makarova KS; Galperin MY; Koonin EV
    mBio; 2017 Dec; 8(6):. PubMed ID: 29208747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.
    Todor H; Sharma K; Pittman AM; Schmid AK
    Nucleic Acids Res; 2013 Oct; 41(18):8546-58. PubMed ID: 23892291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii.
    Martin JH; Sherwood Rawls K; Chan JC; Hwang S; Martinez-Pastor M; McMillan LJ; Prunetti L; Schmid AK; Maupin-Furlow JA
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29914986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeal transcription and its regulators.
    Geiduschek EP; Ouhammouch M
    Mol Microbiol; 2005 Jun; 56(6):1397-407. PubMed ID: 15916593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small Proteins in Archaea, a Mainly Unexplored World.
    Weidenbach K; Gutt M; Cassidy L; Chibani C; Schmitz RA
    J Bacteriol; 2022 Jan; 204(1):e0031321. PubMed ID: 34543104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms.
    Flores-Bautista E; Hernandez-Guerrero R; Huerta-Saquero A; Tenorio-Salgado S; Rivera-Gomez N; Romero A; Ibarra JA; Perez-Rueda E
    PLoS One; 2020; 15(8):e0237135. PubMed ID: 32822422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription in the archaea: basal factors, regulation, and stress gene expression.
    Hickey AJ; Conway de Macario E; Macario AJ
    Crit Rev Biochem Mol Biol; 2002; 37(4):199-258. PubMed ID: 12236465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic technologies for Archaea.
    Rother M; Metcalf WW
    Curr Opin Microbiol; 2005 Dec; 8(6):745-51. PubMed ID: 16257573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Transcriptional Regulator Related to Thiamine Phosphate Synthase Controls Thiamine Metabolism Genes in Archaea.
    Rodionov DA; Leyn SA; Li X; Rodionova IA
    J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between nucleoid organization and transcription in archaeal genomes.
    Peeters E; Driessen RP; Werner F; Dame RT
    Nat Rev Microbiol; 2015 Jun; 13(6):333-41. PubMed ID: 25944489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering novel biology by in silico archaeology.
    Ettema TJ; de Vos WM; van der Oost J
    Nat Rev Microbiol; 2005 Nov; 3(11):859-69. PubMed ID: 16175172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Discovery of Archaeal Transcription Factor Functions in Regulatory Networks through Quantitative Phenotyping Analysis.
    Darnell CL; Tonner PD; Gulli JG; Schmidler SC; Schmid AK
    mSystems; 2017; 2(5):. PubMed ID: 28951888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription Regulators in Archaea: Homologies and Differences with Bacterial Regulators.
    Lemmens L; Maklad HR; Bervoets I; Peeters E
    J Mol Biol; 2019 Sep; 431(20):4132-4146. PubMed ID: 31195017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The repertoire of DNA-binding transcription factors in prokaryotes: functional and evolutionary lessons.
    Perez-Rueda E; Martinez-Nuñez MA
    Sci Prog; 2012; 95(Pt 3):315-29. PubMed ID: 23094327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal and regulated transcription in archaea.
    Soppa J
    Adv Appl Microbiol; 2001; 50():171-217. PubMed ID: 11677684
    [No Abstract]   [Full Text] [Related]  

  • 20. Predicted highly expressed genes in archaeal genomes.
    Karlin S; Mrázek J; Ma J; Brocchieri L
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7303-8. PubMed ID: 15883368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.