BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 29178820)

  • 1. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts.
    Pasero P; Vindigni A
    Annu Rev Genet; 2017 Nov; 51():477-499. PubMed ID: 29178820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA damage tolerance by recombination: Molecular pathways and DNA structures.
    Branzei D; Szakal B
    DNA Repair (Amst); 2016 Aug; 44():68-75. PubMed ID: 27236213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability.
    Colosio A; Frattini C; Pellicanò G; Villa-Hernández S; Bermejo R
    Nucleic Acids Res; 2016 Dec; 44(22):10676-10690. PubMed ID: 27672038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model.
    Barbour L; Xiao W
    Mutat Res; 2003 Nov; 532(1-2):137-55. PubMed ID: 14643434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M; Aguilera A
    Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks.
    Osman F; Whitby MC
    DNA Repair (Amst); 2007 Jul; 6(7):1004-17. PubMed ID: 17409028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human HELQ regulates DNA end resection at DNA double-strand breaks and stalled replication forks.
    Zhao Y; Hou K; Li Y; Hao S; Liu Y; Na Y; Li C; Cui J; Xu X; Wu X; Wang H
    Nucleic Acids Res; 2023 Dec; 51(22):12207-12223. PubMed ID: 37897354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stalled replication forks: making ends meet for recognition and stabilization.
    Masai H; Tanaka T; Kohda D
    Bioessays; 2010 Aug; 32(8):687-97. PubMed ID: 20658707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of arrested replication forks by homologous recombination is error-prone.
    Iraqui I; Chekkal Y; Jmari N; Pietrobon V; Fréon K; Costes A; Lambert SA
    PLoS Genet; 2012; 8(10):e1002976. PubMed ID: 23093942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes.
    Deegan TD; Baxter J; Ortiz Bazán MÁ; Yeeles JTP; Labib KPM
    Mol Cell; 2019 Apr; 74(2):231-244.e9. PubMed ID: 30850330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair.
    Sun W; Nandi S; Osman F; Ahn JS; Jakovleska J; Lorenz A; Whitby MC
    Mol Cell; 2008 Oct; 32(1):118-28. PubMed ID: 18851838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EXO5-DNA structure and BLM interactions direct DNA resection critical for ATR-dependent replication restart.
    Hambarde S; Tsai CL; Pandita RK; Bacolla A; Maitra A; Charaka V; Hunt CR; Kumar R; Limbo O; Le Meur R; Chazin WJ; Tsutakawa SE; Russell P; Schlacher K; Pandita TK; Tainer JA
    Mol Cell; 2021 Jul; 81(14):2989-3006.e9. PubMed ID: 34197737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUMOylation mediates CtIP's functions in DNA end resection and replication fork protection.
    Locke AJ; Hossain L; McCrostie G; Ronato DA; Fitieh A; Rafique TA; Mashayekhi F; Motamedi M; Masson JY; Ismail IH
    Nucleic Acids Res; 2021 Jan; 49(2):928-953. PubMed ID: 33406258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage.
    Mayle R; Campbell IM; Beck CR; Yu Y; Wilson M; Shaw CA; Bjergbaek L; Lupski JR; Ira G
    Science; 2015 Aug; 349(6249):742-7. PubMed ID: 26273056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stalled replication forks within heterochromatin require ATRX for protection.
    Huh MS; Ivanochko D; Hashem LE; Curtin M; Delorme M; Goodall E; Yan K; Picketts DJ
    Cell Death Dis; 2016 May; 7(5):e2220. PubMed ID: 27171262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA replication stress triggers rapid DNA replication fork breakage by Artemis and XPF.
    Bétous R; Goullet de Rugy T; Pelegrini AL; Queille S; de Villartay JP; Hoffmann JS
    PLoS Genet; 2018 Jul; 14(7):e1007541. PubMed ID: 30059501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.
    Sasaki M; Kobayashi T
    Mol Cell; 2017 May; 66(4):533-545.e5. PubMed ID: 28525744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse embryonic stem cells have increased capacity for replication fork restart driven by the specific Filia-Floped protein complex.
    Zhao B; Zhang W; Cun Y; Li J; Liu Y; Gao J; Zhu H; Zhou H; Zhang R; Zheng P
    Cell Res; 2018 Jan; 28(1):69-89. PubMed ID: 29125140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.