These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29178875)

  • 1. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution.
    Hirokawa Y; Matsuo S; Hamada H; Matsuda F; Hanai T
    Microb Cell Fact; 2017 Nov; 16(1):212. PubMed ID: 29178875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.
    Hirokawa Y; Maki Y; Hanai T
    Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway.
    Hirokawa Y; Maki Y; Tatsuke T; Hanai T
    Metab Eng; 2016 Mar; 34():97-103. PubMed ID: 26769097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum.
    Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol.
    Li H; Liao JC
    Microb Cell Fact; 2013 Jan; 12():4. PubMed ID: 23339487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942.
    Hirokawa Y; Goto R; Umetani Y; Hanai T
    J Biosci Bioeng; 2017 Jul; 124(1):54-61. PubMed ID: 28325659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol.
    Yang B; Liang S; Liu H; Liu J; Cui Z; Wen J
    Bioresour Technol; 2018 Nov; 267():599-607. PubMed ID: 30056370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content.
    Serrano-Bermúdez LM; González Barrios AF; Montoya D
    PLoS One; 2018; 13(12):e0209447. PubMed ID: 30571717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering.
    Wischral D; Zhang J; Cheng C; Lin M; De Souza LMG; Pessoa FLP; Pereira N; Yang ST
    Bioresour Technol; 2016 Jul; 212():100-110. PubMed ID: 27085150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose.
    Zhang Y; Ma C; Dischert W; Soucaille P; Zeng AP
    Biotechnol J; 2019 Sep; 14(9):e1900003. PubMed ID: 30925016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.
    Kanno M; Atsumi S
    ACS Synth Biol; 2017 Jan; 6(1):69-75. PubMed ID: 27643408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Pseudomonas denitrificans for the 1,3-propanediol production from glycerol.
    Zhou S; Lama S; Sankaranarayanan M; Park S
    Bioresour Technol; 2019 Nov; 292():121933. PubMed ID: 31404755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions.
    Hirokawa Y; Dempo Y; Fukusaki E; Hanai T
    J Biosci Bioeng; 2017 Jan; 123(1):39-45. PubMed ID: 27613406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose.
    Lama S; Seol E; Park S
    Bioresour Technol; 2017 Dec; 245(Pt B):1542-1550. PubMed ID: 28549809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Metabolic engineering and process optimization.
    Zhang Y; Yun J; Zabed HM; Dou Y; Zhang G; Zhao M; Taherzadeh MJ; Ragauskas A; Qi X
    Bioresour Technol; 2023 Feb; 369():128438. PubMed ID: 36470488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: metabolic flux distribution of a strain cultured in glycerol.
    Serrano-Bermúdez LM; González Barrios AF; Maranas CD; Montoya D
    BMC Syst Biol; 2017 Jun; 11(1):58. PubMed ID: 28571567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii.
    Maervoet VE; De Maeseneire SL; Avci FG; Beauprez J; Soetaert WK; De Mey M
    Microb Cell Fact; 2016 Jan; 15():23. PubMed ID: 26822953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes.
    Broddrick JT; Welkie DG; Jallet D; Golden SS; Peers G; Palsson BO
    Metab Eng; 2019 Mar; 52():42-56. PubMed ID: 30439494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae.
    Oh BR; Lee SM; Heo SY; Seo JW; Kim CH
    Microb Cell Fact; 2018 Jun; 17(1):92. PubMed ID: 29907119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of glpF gene encoding the glycerol facilitator improves 1,3-propanediol production from glucose via glycerol in Escherichia coli.
    Sato R; Tanaka T; Ohara H; Aso Y
    Lett Appl Microbiol; 2021 Jan; 72(1):68-73. PubMed ID: 32964453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.