BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29178884)

  • 41. A new panel of SNPs to assess thyroid carcinoma risk: a pilot study in a Brazilian admixture population.
    Dos Santos ICC; Genre J; Marques D; da Silva AMG; Dos Santos JC; de Araújo JNG; Duarte VHR; Carracedo A; Torres-Español M; Bastos G; de Oliveira Ramos CC; Luchessi AD; Silbiger VN
    BMC Med Genet; 2017 Nov; 18(1):140. PubMed ID: 29178884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Association between single nucleotide polymorphisms of upstream transcription factor 1 (USF1) and susceptibility to papillary thyroid cancer.
    Yuan Q; Bu Q; Li G; Zhang J; Cui T; Zhu R; Mu D
    Clin Endocrinol (Oxf); 2016 Apr; 84(4):564-70. PubMed ID: 26052935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mannose-binding lectin and MBL-associated serine protease-2 gene polymorphisms in a Brazilian population from Rio de Janeiro.
    Ferraroni NR; Segat L; Guimarães RL; Brandão LA; Crovella S; Constantino-Silva RN; Loja C; da Silva Duarte AJ; Grumach AS
    Int J Immunogenet; 2012 Feb; 39(1):32-8. PubMed ID: 22035380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fine-mapping of two differentiated thyroid carcinoma susceptibility loci at 9q22.33 and 14q13.3 detects novel candidate functional SNPs in Europeans from metropolitan France and Melanesians from New Caledonia.
    Tcheandjieu C; Lesueur F; Sanchez M; Baron-Dubourdieu D; Guizard AV; Mulot C; Laurent-Puig P; Schvartz C; Truong T; Guenel P
    Int J Cancer; 2016 Aug; 139(3):617-27. PubMed ID: 26991144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The FOXE1 locus is a major genetic determinant for familial nonmedullary thyroid carcinoma.
    Bonora E; Rizzato C; Diquigiovanni C; Oudot-Mellakh T; Campa D; Vargiolu M; Guedj M; ; McKay JD; Romeo G; Canzian F; Lesueur F
    Int J Cancer; 2014 May; 134(9):2098-107. PubMed ID: 24127282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Common variants of the thyroglobulin gene are associated with differentiated thyroid cancer risk.
    Akdi A; Pérez G; Pastor S; Castell J; Biarnés J; Marcos R; Velázquez A
    Thyroid; 2011 May; 21(5):519-25. PubMed ID: 21476894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications.
    Jin S; Borkhuu O; Bao W; Yang YT
    J Clin Med Res; 2016 Apr; 8(4):284-96. PubMed ID: 26985248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Association Studies Between XRCC1, XRCC2, XRCC3 Polymorphisms and Differentiated Thyroid Carcinoma.
    Yan L; Li Q; Li X; Ji H; Zhang L
    Cell Physiol Biochem; 2016; 38(3):1075-84. PubMed ID: 26938431
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Comprehensive Meta-analysis of Case-Control Association Studies to Evaluate Polymorphisms Associated with the Risk of Differentiated Thyroid Carcinoma.
    Figlioli G; Elisei R; Romei C; Melaiu O; Cipollini M; Bambi F; Chen B; Köhler A; Cristaudo A; Hemminki K; Gemignani F; Försti A; Landi S
    Cancer Epidemiol Biomarkers Prev; 2016 Apr; 25(4):700-13. PubMed ID: 26843521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of 3'UTR RET Variants on RET mRNA Secondary Structure and Disease Presentation in Medullary Thyroid Carcinoma.
    Ceolin L; Romitti M; Siqueira DR; Vaz Ferreira C; Oliboni Scapineli J; Assis-Brazil B; Vieira Maximiano R; Dias Amarante T; de Souza Nunes MC; Weber G; Maia AL
    PLoS One; 2016; 11(2):e0147840. PubMed ID: 26829565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One SNP at a Time: Moving beyond GWAS in Psoriasis.
    Ray-Jones H; Eyre S; Barton A; Warren RB
    J Invest Dermatol; 2016 Mar; 136(3):567-573. PubMed ID: 26811024
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The investigation of foxe1 variations in papillary thyroid carcinoma.
    Somuncu E; Karatas A; Ferahman S; Saygili N; Yilmaz E; Ozturk O; Kapan M
    Int J Clin Exp Pathol; 2015; 8(10):13458-64. PubMed ID: 26722557
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome.
    Tak YG; Farnham PJ
    Epigenetics Chromatin; 2015; 8():57. PubMed ID: 26719772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Association Between Genetic Polymorphisms in the Promoter Regions of Let-7 and Risk of Papillary Thyroid Carcinoma: A Case-Control Study.
    Wang Y; Wei T; Xiong J; Chen P; Wang X; Zhang L; Gao L; Zhu J
    Medicine (Baltimore); 2015 Oct; 94(43):e1879. PubMed ID: 26512603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A minimum set of ancestry informative markers for determining admixture proportions in a mixed American population: the Brazilian set.
    Santos HC; Horimoto AV; Tarazona-Santos E; Rodrigues-Soares F; Barreto ML; Horta BL; Lima-Costa MF; Gouveia MH; Machado M; Silva TM; Sanches JM; Esteban N; Magalhaes WC; Rodrigues MR; Kehdy FS; Pereira AC;
    Eur J Hum Genet; 2016 May; 24(5):725-31. PubMed ID: 26395555
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Replication and Meta-Analysis of Common Gene Mutations in TTF1 and TTF2 with Papillary Thyroid Cancer.
    Gao Y; Chen F; Niu S; Lin S; Li S
    Medicine (Baltimore); 2015 Sep; 94(36):e1246. PubMed ID: 26356687
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.