These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 29179087)
1. Structural studies on Demospongiae sponges from Gökçeada Island in the Northern Aegean Sea. Bayari SH; Şen EH; Ide S; Topaloglu B Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():368-377. PubMed ID: 29179087 [TBL] [Abstract][Full Text] [Related]
2. Micro- and nano-structural characterization of six marine sponges of the class Demospongiae. Şen EH; Ide S; Bayari SH; Hill M Eur Biophys J; 2016 Dec; 45(8):831-842. PubMed ID: 27067435 [TBL] [Abstract][Full Text] [Related]
3. Physical and chemical analysis of the siliceous skeletons in six sponges of two groups (demospongiae and hexactinellida). Sandford F Microsc Res Tech; 2003 Nov; 62(4):336-55. PubMed ID: 14534907 [TBL] [Abstract][Full Text] [Related]
4. Structural characterization of siliceous spicules from marine sponges. Croce G; Frache A; Milanesio M; Marchese L; Causà M; Viterbo D; Barbaglia A; Bolis V; Bavestrello G; Cerrano C; Benatti U; Pozzolini M; Giovine M; Amenitsch H Biophys J; 2004 Jan; 86(1 Pt 1):526-34. PubMed ID: 14695297 [TBL] [Abstract][Full Text] [Related]
5. Organic crystal lattices in the axial filament of silica spicules of Demospongiae. Werner P; Blumtritt H; Natalio F J Struct Biol; 2017 Jun; 198(3):186-195. PubMed ID: 28323140 [TBL] [Abstract][Full Text] [Related]
6. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Uriz MJ; Turon X; Becerro MA; Agell G Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903 [TBL] [Abstract][Full Text] [Related]
7. Collagen from the Marine Sponges Axinella cannabina and Suberites carnosus: Isolation and Morphological, Biochemical, and Biophysical Characterization. Tziveleka LA; Ioannou E; Tsiourvas D; Berillis P; Foufa E; Roussis V Mar Drugs; 2017 May; 15(6):. PubMed ID: 28555046 [TBL] [Abstract][Full Text] [Related]
9. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni. Müller WE; Boreiko A; Schlossmacher U; Wang X; Eckert C; Kropf K; Li J; Schröder HC J Exp Biol; 2008 Feb; 211(Pt 3):300-9. PubMed ID: 18203984 [TBL] [Abstract][Full Text] [Related]
10. Intra-epithelial spicules in a homosclerophorid sponge. Maldonado M; Riesgo A Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151 [TBL] [Abstract][Full Text] [Related]
11. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni. Wang X; Schröder HC; Müller WE Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903 [TBL] [Abstract][Full Text] [Related]
12. The Characterization and Cytotoxic Evaluation of Rocha MS; Marques CF; Carvalho AC; Martins E; Ereskovsky A; Reis RL; Silva TH Mar Drugs; 2024 Jan; 22(2):. PubMed ID: 38393026 [No Abstract] [Full Text] [Related]
13. SEM-EDS and X-ray micro computed tomography studies of skeletal surface pattern and body structure in the freshwater sponge Spongilla lacustris collected from Goczalkowice reservoir habit (Southern Poland). Karcz J; Woznica A; Binkowski M; Klonowska-Olejnik M; Bernas T; Karczewski J; Migula P Folia Histochem Cytobiol; 2015; 53(1):88-95. PubMed ID: 25679287 [TBL] [Abstract][Full Text] [Related]
14. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). Ehrlich H; Maldonado M; Spindler KD; Eckert C; Hanke T; Born R; Goebel C; Simon P; Heinemann S; Worch H J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):347-56. PubMed ID: 17285638 [TBL] [Abstract][Full Text] [Related]
15. Silica structure in the spicules of the sponge Suberites domuncula. Holzhüter G; Lakshminarayanan K; Gerber T Anal Bioanal Chem; 2005 Jun; 382(4):1121-6. PubMed ID: 15886857 [TBL] [Abstract][Full Text] [Related]
16. Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota(Cambrian Stage 5), Guizhou, South China. Yang XL; Zhao YL; Babcock LE; Peng J Sci Rep; 2017 Feb; 7():42945. PubMed ID: 28220860 [TBL] [Abstract][Full Text] [Related]
17. Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Aguilar-Camacho JM; Doonan L; McCormack GP Mol Phylogenet Evol; 2019 Feb; 131():245-253. PubMed ID: 30502904 [TBL] [Abstract][Full Text] [Related]
18. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae. Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987 [TBL] [Abstract][Full Text] [Related]
19. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578 [TBL] [Abstract][Full Text] [Related]
20. Luciferase a light source for the silica-based optical waveguides (spicules) in the demosponge Suberites domuncula. Müller WE; Kasueske M; Wang X; Schröder HC; Wang Y; Pisignano D; Wiens M Cell Mol Life Sci; 2009 Feb; 66(3):537-52. PubMed ID: 19151920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]