BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 29179543)

  • 1. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.
    Zhong Y; Cheng JJ
    J Agric Food Chem; 2017 Dec; 65(50):10875-10883. PubMed ID: 29179543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments.
    Sun X; Zhong Y; Huang Z; Yang Y
    PLoS One; 2014; 9(11):e112270. PubMed ID: 25375113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of selenite on green microalga Haematococcus pluvialis: Bioaccumulation of selenium and enhancement of astaxanthin production.
    Zheng Y; Li Z; Tao M; Li J; Hu Z
    Aquat Toxicol; 2017 Feb; 183():21-27. PubMed ID: 27987436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium Incorporation to Amino Acids in
    Mylenko M; Vu DL; Kuta J; Ranglová K; Kubáč D; Lakatos G; Grivalský T; Caporgno MP; da Câmara Manoel JA; Kopecký J; Masojídek J; Hrouzek P
    J Agric Food Chem; 2020 Feb; 68(6):1654-1665. PubMed ID: 31935099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccumulation of selenium in halotolerant microalga Dunaliella salina and its impact on photosynthesis, reactive oxygen species, antioxidative enzymes, and neutral lipids.
    Singh P; Singh S; Maurya P; Mohanta A; Dubey H; Khadim SR; Singh AK; Pandey AK; Singh AK; Asthana RK
    Mar Pollut Bull; 2023 May; 190():114842. PubMed ID: 36965269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of selenium on biological and physiological properties of the duckweed Landoltia punctata.
    Zhong Y; Cheng JJ
    Plant Biol (Stuttg); 2016 Sep; 18(5):797-804. PubMed ID: 27284791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenate and selenite affect photosynthetic pigments and ROS scavenging through distinct mechanisms in cowpea (Vigna unguiculata (L.) walp) plants.
    Silva VM; Rimoldi Tavanti RF; Gratão PL; Alcock TD; Reis ARD
    Ecotoxicol Environ Saf; 2020 Sep; 201():110777. PubMed ID: 32485493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review.
    Doucha J; Lívanský K; Kotrbácek V; Zachleder V
    Appl Microbiol Biotechnol; 2009 Jul; 83(6):1001-8. PubMed ID: 19533119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa.
    Xue J; Wang L; Zhang L; Balamurugan S; Li DW; Zeng H; Yang WD; Liu JS; Li HY
    Microb Cell Fact; 2016 Jul; 15(1):120. PubMed ID: 27387324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteogenomic Analyses Revealed Favorable Metabolism Pattern Alterations in Rotifer Brachionus plicatilis Fed with Selenium-rich Chlorella.
    Sun X; Cui Y; Wang Q; Tang S; Cao X; Luo H; He Z; Hu X; Nie X; Yang Y; Wang T
    J Agric Food Chem; 2018 Jul; 66(26):6699-6707. PubMed ID: 29874910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture.
    Wen X; Geng Y; Li Y
    Bioresour Technol; 2014 Jun; 161():297-303. PubMed ID: 24717322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical- and species-specific toxicity of nonylphenol and octylphenol to microalgae Chlorella pyrenoidosa and Scenedesmus obliquus.
    Yang W; Gao X; Wu Y; Wan L; Lu C; Huang J; Chen H; Yang Y; Ding H; Zhang W
    Environ Toxicol Pharmacol; 2021 Jan; 81():103517. PubMed ID: 33080356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa.
    Liu R; Deng Y; Zhang W; Zhang L; Wang Z; Li B; Diao J; Zhou Z
    Ecotoxicol Environ Saf; 2019 Dec; 185():109691. PubMed ID: 31563746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.
    Miazek K; Remacle C; Richel A; Goffin D
    Bioresour Technol; 2017 Apr; 230():122-131. PubMed ID: 28187341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium Uptake and Methylation by the Microalga Chlamydomonas reinhardtii.
    Vriens B; Behra R; Voegelin A; Zupanic A; Winkel LH
    Environ Sci Technol; 2016 Jan; 50(2):711-20. PubMed ID: 26690834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae.
    Small DP; Hüner NP; Wan W
    Bioelectromagnetics; 2012 May; 33(4):298-308. PubMed ID: 21953117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light.
    Mohsenpour SF; Willoughby N
    Bioresour Technol; 2013 Aug; 142():147-53. PubMed ID: 23735796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa.
    Lu T; Zhu Y; Xu J; Ke M; Zhang M; Tan C; Fu Z; Qian H
    Environ Pollut; 2018 Mar; 234():379-388. PubMed ID: 29202416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid.
    Qian H; Xu J; Lu T; Zhang Q; Qu Q; Yang Z; Pan X
    Sci Total Environ; 2018 Jun; 625():1415-1422. PubMed ID: 29996438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater.
    Hongyang S; Yalei Z; Chunmin Z; Xuefei Z; Jinpeng L
    Bioresour Technol; 2011 Nov; 102(21):9884-90. PubMed ID: 21911289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.