These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29179622)

  • 1. Traumatic Brain Injury Impairs Myogenic Constriction of Cerebral Arteries: Role of Mitochondria-Derived H
    Szarka N; Pabbidi MR; Amrein K; Czeiter E; Berta G; Pohoczky K; Helyes Z; Ungvari Z; Koller A; Buki A; Toth P
    J Neurotrauma; 2018 Apr; 35(7):930-939. PubMed ID: 29179622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice.
    Toth P; Csiszar A; Tucsek Z; Sosnowska D; Gautam T; Koller A; Schwartzman ML; Sonntag WE; Ungvari Z
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(12):H1698-708. PubMed ID: 24097425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels.
    Earley S; Heppner TJ; Nelson MT; Brayden JE
    Circ Res; 2005 Dec; 97(12):1270-9. PubMed ID: 16269659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis.
    Harraz OF; Brett SE; Zechariah A; Romero M; Puglisi JL; Wilson SM; Welsh DG
    Arterioscler Thromb Vasc Biol; 2015 Aug; 35(8):1843-51. PubMed ID: 26069238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertension-Induced Enhanced Myogenic Constriction of Cerebral Arteries Is Preserved after Traumatic Brain Injury.
    Szarka N; Amrein K; Horvath P; Ivic I; Czeiter E; Buki A; Koller A; Toth P
    J Neurotrauma; 2017 Jul; 34(14):2315-2319. PubMed ID: 28249552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental diabetes mellitus down-regulates large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle and alters functional conductance.
    Wang Y; Zhang HT; Su XL; Deng XL; Yuan BX; Zhang W; Wang XF; Yang YB
    Curr Neurovasc Res; 2010 May; 7(2):75-84. PubMed ID: 20334613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRPV4 channels contribute to renal myogenic autoregulation in neonatal pigs.
    Soni H; Peixoto-Neves D; Matthews AT; Adebiyi A
    Am J Physiol Renal Physiol; 2017 Nov; 313(5):F1136-F1148. PubMed ID: 28768667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of TRPV4 and BKCa for treatment of brain diseases.
    Liu N; Yan F; Ma Q; Zhao J
    Bioorg Med Chem; 2020 Aug; 28(16):115609. PubMed ID: 32690264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelial-dependent dilation following chronic hypoxia involves TRPV4-mediated activation of endothelial BK channels.
    Naik JS; Walker BR
    Pflugers Arch; 2018 Apr; 470(4):633-648. PubMed ID: 29380056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic interference with peroxisome proliferator-activated receptor γ in smooth muscle enhances myogenic tone in the cerebrovasculature via A Rho kinase-dependent mechanism.
    De Silva TM; Ketsawatsomkron P; Pelham C; Sigmund CD; Faraci FM
    Hypertension; 2015 Feb; 65(2):345-51. PubMed ID: 25385762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apelin Reduces Nitric Oxide-Induced Relaxation of Cerebral Arteries by Inhibiting Activation of Large-Conductance, Calcium-Activated K Channels.
    Mughal A; Sun C; OʼRourke ST
    J Cardiovasc Pharmacol; 2018 Apr; 71(4):223-232. PubMed ID: 29620606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise Prevents Upregulation of RyRs-BKCa Coupling in Cerebral Arterial Smooth Muscle Cells From Spontaneously Hypertensive Rats.
    Shi L; Zhang Y; Liu Y; Gu B; Cao R; Chen Y; Zhao T
    Arterioscler Thromb Vasc Biol; 2016 Aug; 36(8):1607-17. PubMed ID: 27339460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downregulation of Endothelial Transient Receptor Potential Vanilloid Type 4 Channel and Small-Conductance of Ca2+-Activated K+ Channels Underpins Impaired Endothelium-Dependent Hyperpolarization in Hypertension.
    Seki T; Goto K; Kiyohara K; Kansui Y; Murakami N; Haga Y; Ohtsubo T; Matsumura K; Kitazono T
    Hypertension; 2017 Jan; 69(1):143-153. PubMed ID: 27872234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin activates BK
    Xu Z; Wu Y; Zhang Y; Zhang H; Shi L
    Eur J Pharmacol; 2019 Jan; 842():177-188. PubMed ID: 30391348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of transient receptor potential vanilloid 4 channels dilates rat retinal arterioles through nitric oxide- and BK
    Mori A; Takeda K; Sakamoto K; Nakahara T
    Naunyn Schmiedebergs Arch Pharmacol; 2020 Jan; 393(1):35-41. PubMed ID: 31392384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries.
    Earley S; Waldron BJ; Brayden JE
    Circ Res; 2004 Oct; 95(9):922-9. PubMed ID: 15472118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents cognitive dysfunction in hypertension.
    Diaz-Otero JM; Yen TC; Fisher C; Bota D; Jackson WF; Dorrance AM
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1304-H1315. PubMed ID: 30118343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THE ROLE OF TRPV4 CATION CHANNELS IN THE REGULATION OF PHENYLEPHRINE-INDUCED CONTRACTION OF RAT PULMONARY ARTER.
    Dryn D; Melnyk M; Kizub I; Hu H; Soloviev A; Zholos A
    Fiziol Zh (1994); 2016; 62(2):79-86. PubMed ID: 29537229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of TRPV4 channel current-like activity in Fawn Hooded hypertensive (FHH) rat cerebral arterial muscle cells.
    Gebremedhin D; Zhang DX; Weihrauch D; Uche NN; Harder DR
    PLoS One; 2017; 12(5):e0176796. PubMed ID: 28472069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The receptor-dependent and non-receptor-dependent mechanism of melatonin activated BK
    Chen Y; Xu ZX; Zhang HR; Wu Y; Shi LJ
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2018 May; 34(5):470-475. PubMed ID: 30788931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.