BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 29180427)

  • 1. AP-4 mediates export of ATG9A from the
    Mattera R; Park SY; De Pace R; Guardia CM; Bonifacino JS
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):E10697-E10706. PubMed ID: 29180427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking.
    Behne R; Teinert J; Wimmer M; D'Amore A; Davies AK; Scarrott JM; Eberhardt K; Brechmann B; Chen IP; Buttermore ED; Barrett L; Dwyer S; Chen T; Hirst J; Wiesener A; Segal D; Martinuzzi A; Duarte ST; Bennett JT; Bourinaris T; Houlden H; Roubertie A; Santorelli FM; Robinson M; Azzouz M; Lipton JO; Borner GHH; Sahin M; Ebrahimi-Fakhari D
    Hum Mol Genet; 2020 Jan; 29(2):320-334. PubMed ID: 31915823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of AP-4 in cargo export from the trans-Golgi network and hereditary spastic paraplegia.
    Mattera R; De Pace R; Bonifacino JS
    Biochem Soc Trans; 2020 Oct; 48(5):1877-1888. PubMed ID: 33084855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The FTS-Hook-FHIP (FHF) complex interacts with AP-4 to mediate perinuclear distribution of AP-4 and its cargo ATG9A.
    Mattera R; Williamson CD; Ren X; Bonifacino JS
    Mol Biol Cell; 2020 Apr; 31(9):963-979. PubMed ID: 32073997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axonal autophagosome maturation defect through failure of ATG9A sorting underpins pathology in AP-4 deficiency syndrome.
    Ivankovic D; Drew J; Lesept F; White IJ; López Doménech G; Tooze SA; Kittler JT
    Autophagy; 2020 Mar; 16(3):391-407. PubMed ID: 31142229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome.
    De Pace R; Skirzewski M; Damme M; Mattera R; Mercurio J; Foster AM; Cuitino L; Jarnik M; Hoffmann V; Morris HD; Han TU; Mancini GMS; Buonanno A; Bonifacino JS
    PLoS Genet; 2018 Apr; 14(4):e1007363. PubMed ID: 29698489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atg9A trafficking through the recycling endosomes is required for autophagosome formation.
    Imai K; Hao F; Fujita N; Tsuji Y; Oe Y; Araki Y; Hamasaki M; Noda T; Yoshimori T
    J Cell Sci; 2016 Oct; 129(20):3781-3791. PubMed ID: 27587839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A.
    Davies AK; Itzhak DN; Edgar JR; Archuleta TL; Hirst J; Jackson LP; Robinson MS; Borner GHH
    Nat Commun; 2018 Sep; 9(1):3958. PubMed ID: 30262884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RUSC2 and WDR47 oppositely regulate kinesin-1-dependent distribution of ATG9A to the cell periphery.
    Guardia CM; Jain A; Mattera R; Friefeld A; Li Y; Bonifacino JS
    Mol Biol Cell; 2021 Nov; 32(21):ar25. PubMed ID: 34432492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AP-4 regulates neuronal lysosome composition, function, and transport via regulating export of critical lysosome receptor proteins at the trans-Golgi network.
    Majumder P; Edmison D; Rodger C; Patel S; Reid E; Gowrishankar S
    Mol Biol Cell; 2022 Oct; 33(12):ar102. PubMed ID: 35976706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants that mediate the sorting of human ATG9A from the endoplasmic reticulum.
    Staudt C; Gilis F; Boonen M; Jadot M
    Biochim Biophys Acta; 2016 Sep; 1863(9):2299-310. PubMed ID: 27316455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Reelin receptor ApoER2 is a cargo for the adaptor protein complex AP-4: Implications for Hereditary Spastic Paraplegia.
    Caracci MO; Pizarro H; Alarcón-Godoy C; Fuentealba LM; Farfán P; De Pace R; Santibañez N; Cavieres VA; Pástor TP; Bonifacino JS; Mardones GA; Marzolo MP
    Prog Neurobiol; 2024 Mar; 234():102575. PubMed ID: 38281682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VAMP7 Regulates Autophagosome Formation by Supporting Atg9a Functions in Pancreatic β-Cells From Male Mice.
    Aoyagi K; Itakura M; Fukutomi T; Nishiwaki C; Nakamichi Y; Torii S; Makiyama T; Harada A; Ohara-Imaizumi M
    Endocrinology; 2018 Nov; 159(11):3674-3688. PubMed ID: 30215699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved glycine residue in the C-terminal region of human ATG9A is required for its transport from the endoplasmic reticulum to the Golgi apparatus.
    Staudt C; Gilis F; Tevel V; Jadot M; Boonen M
    Biochem Biophys Res Commun; 2016 Oct; 479(2):404-409. PubMed ID: 27663665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia.
    Hirst J; Irving C; Borner GH
    Traffic; 2013 Feb; 14(2):153-64. PubMed ID: 23167973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ.
    Judith D; Jefferies HBJ; Boeing S; Frith D; Snijders AP; Tooze SA
    J Cell Biol; 2019 May; 218(5):1634-1652. PubMed ID: 30917996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The adaptor protein chaperone AAGAB stabilizes AP-4 complex subunits.
    Mattera R; De Pace R; Bonifacino JS
    Mol Biol Cell; 2022 Oct; 33(12):ar109. PubMed ID: 35976721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure.
    Corcelle-Termeau E; Vindeløv SD; Hämälistö S; Mograbi B; Keldsbo A; Bräsen JH; Favaro E; Adam D; Szyniarowski P; Hofman P; Krautwald S; Farkas T; Petersen NH; Rohde M; Linkermann A; Jäättelä M
    Autophagy; 2016 May; 12(5):833-49. PubMed ID: 27070082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small GTPase Rab1B is associated with ATG9A vesicles and regulates autophagosome formation.
    Kakuta S; Yamaguchi J; Suzuki C; Sasaki M; Kazuno S; Uchiyama Y
    FASEB J; 2017 Sep; 31(9):3757-3773. PubMed ID: 28522593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bivalent Motif-Ear Interactions Mediate the Association of the Accessory Protein Tepsin with the AP-4 Adaptor Complex.
    Mattera R; Guardia CM; Sidhu SS; Bonifacino JS
    J Biol Chem; 2015 Dec; 290(52):30736-49. PubMed ID: 26542808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.