These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29180431)

  • 21. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ TEM Studies of Sodium Polysulfides Electrochemistry in High Temperature Na-S Nanobatteries.
    Li Y; Tang Y; Li X; Tu W; Zhang L; Huang J
    Small; 2021 Jun; 17(23):e2100846. PubMed ID: 33983675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. a-MoS
    Zhang Y; Chen D; Li X; Shen J; Chen Z; Cao SA; Li T; Xu F
    Nanoscale; 2019 Aug; 11(34):16043-16051. PubMed ID: 31432853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of the Mechanical Properties of a Functionalized Cross-Linked Binder on the Longevity of Li-S Batteries.
    Kwok CY; Pang Q; Worku A; Liang X; Gauthier M; Nazar LF
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22481-22491. PubMed ID: 31141332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Foldable and High Sulfur Loading 3D Carbon Electrode for High-performance Li-S Battery Application.
    He N; Zhong L; Xiao M; Wang S; Han D; Meng Y
    Sci Rep; 2016 Sep; 6():33871. PubMed ID: 27677602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-Dimensionally Reinforced Freestanding Cathode for High-Energy Room-Temperature Sodium-Sulfur Batteries.
    Ghosh A; Kumar A; Roy A; Panda MR; Kar M; MacFarlane DR; Mitra S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14101-14109. PubMed ID: 30919631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.
    Nelson J; Misra S; Yang Y; Jackson A; Liu Y; Wang H; Dai H; Andrews JC; Cui Y; Toney MF
    J Am Chem Soc; 2012 Apr; 134(14):6337-43. PubMed ID: 22432568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smaller sulfur molecules promise better lithium-sulfur batteries.
    Xin S; Gu L; Zhao NH; Yin YX; Zhou LJ; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Nov; 134(45):18510-3. PubMed ID: 23101502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rationally Designed Three-Layered TiO
    Huang M; Xi B; Mi L; Zhang Z; Chen W; Feng J; Xiong S
    Small; 2022 Apr; 18(13):e2107819. PubMed ID: 35132781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries.
    Liu W; Jiang J; Yang KR; Mi Y; Kumaravadivel P; Zhong Y; Fan Q; Weng Z; Wu Z; Cha JJ; Zhou H; Batista VS; Brudvig GW; Wang H
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3578-3583. PubMed ID: 28320950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte.
    Hu L; Lu Y; Li X; Liang J; Huang T; Zhu Y; Qian Y
    Small; 2017 Mar; 13(11):. PubMed ID: 28060452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.
    Pang Q; Nazar LF
    ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insight into sulfur reactions in Li-S batteries.
    Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free-Standing Sulfur-Carbon Nanotube Electrode with a Deposited Sulfur Layer for High-Energy Lithium-Sulfur Batteries.
    Kang J; Jung Y
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5019-5023. PubMed ID: 32126693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Sulfur Content Material with Stable Cycling in Lithium-Sulfur Batteries.
    Preefer MB; Oschmann B; Hawker CJ; Seshadri R; Wudl F
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15118-15122. PubMed ID: 28984016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries.
    Liu H; Lai WH; Yang Q; Lei Y; Wu C; Wang N; Wang YX; Chou SL; Liu HK; Dou SX
    Nanomicro Lett; 2021 May; 13(1):121. PubMed ID: 34138346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cathode composites for Li-S batteries via the use of oxygenated porous architectures.
    Demir-Cakan R; Morcrette M; Nouar F; Davoisne C; Devic T; Gonbeau D; Dominko R; Serre C; Férey G; Tarascon JM
    J Am Chem Soc; 2011 Oct; 133(40):16154-60. PubMed ID: 21882857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation.
    Li X; Banis M; Lushington A; Yang X; Sun Q; Zhao Y; Liu C; Li Q; Wang B; Xiao W; Wang C; Li M; Liang J; Li R; Hu Y; Goncharova L; Zhang H; Sham TK; Sun X
    Nat Commun; 2018 Oct; 9(1):4509. PubMed ID: 30375387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.