These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29180655)

  • 1. Transition metal binding selectivity in proteins and its correlation with the phylogenomic classification of the cation diffusion facilitator protein family.
    Barber-Zucker S; Shaanan B; Zarivach R
    Sci Rep; 2017 Nov; 7(1):16381. PubMed ID: 29180655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.
    Montanini B; Blaudez D; Jeandroz S; Sanders D; Chalot M
    BMC Genomics; 2007 Apr; 8():107. PubMed ID: 17448255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metal binding site composition of the cation diffusion facilitator protein MamM cytoplasmic domain impacts its metal responsivity.
    Barber-Zucker S; Shahar A; Kolusheva S; Zarivach R
    Sci Rep; 2020 Aug; 10(1):14022. PubMed ID: 32820200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cation diffusion facilitator protein MamM's cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn
    Barber-Zucker S; Hall J; Froes A; Kolusheva S; MacMillan F; Zarivach R
    J Biol Chem; 2020 Dec; 295(49):16614-16629. PubMed ID: 32967967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Determinants of Metal Ion Transport and Selectivity in Paralogous Cation Diffusion Facilitator Transporters CzcD and MntE in Streptococcus pneumoniae.
    Martin JE; Giedroc DP
    J Bacteriol; 2016 Jan; 198(7):1066-76. PubMed ID: 26787764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal transport mechanism of the cation diffusion facilitator (CDF) protein family - a structural perspective on human CDF (ZnT)-related diseases.
    Barber-Zucker S; Moran A; Zarivach R
    RSC Chem Biol; 2021 Apr; 2(2):486-498. PubMed ID: 34458794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal binding to the dynamic cytoplasmic domain of the cation diffusion facilitator (CDF) protein MamM induces a 'locked-in' configuration.
    Barber-Zucker S; Hall J; Mangapuram SV; Kass I; Kolusheva S; MacMillan F; Zarivach R; Henn A
    FEBS J; 2019 Jun; 286(11):2193-2215. PubMed ID: 30811856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prediction and characterization of metal binding sites in proteins.
    Gregory DS; Martin AC; Cheetham JC; Rees AR
    Protein Eng; 1993 Jan; 6(1):29-35. PubMed ID: 8433968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and evolution of the plant cation diffusion facilitator family of ion transporters.
    Gustin JL; Zanis MJ; Salt DE
    BMC Evol Biol; 2011 Mar; 11():76. PubMed ID: 21435223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications for Cation Selectivity and Evolution by a Novel Cation Diffusion Facilitator Family Member From the Moderate Halophile
    Xu T; Chen H; Li J; Hong S; Shao L; Zheng X; Zou Q; Wang Y; Guo S; Jiang J
    Front Microbiol; 2019; 10():607. PubMed ID: 30967858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of altered function alleles that affect Bacillus subtilis PerR metal ion selectivity.
    Ma Z; Lee JW; Helmann JD
    Nucleic Acids Res; 2011 Jul; 39(12):5036-44. PubMed ID: 21398634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Metal-binding Protein Atlas (MbPA): An Integrated Database for Curating Metalloproteins in All Aspects.
    Li J; He X; Gao S; Liang Y; Qi Z; Xi Q; Zuo Y; Xing Y
    J Mol Biol; 2023 Jul; 435(14):168117. PubMed ID: 37086947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins.
    Rulísek L; Vondrásek J
    J Inorg Biochem; 1998 Sep; 71(3-4):115-27. PubMed ID: 9833317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.
    Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR
    Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates.
    Levy R; Edelman M; Sobolev V
    Proteins; 2009 Aug; 76(2):365-74. PubMed ID: 19173310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of metal ion-binding sites in proteins using the fragment transformation method.
    Lu CH; Lin YF; Lin JJ; Yu CS
    PLoS One; 2012; 7(6):e39252. PubMed ID: 22723976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of metal selectivity and promiscuity in metalloenzymes.
    Eom H; Song WJ
    J Biol Inorg Chem; 2019 Jun; 24(4):517-531. PubMed ID: 31115763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.