These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 29180763)
1. Identification of genes expressed in a mesenchymal subset regulating prostate organogenesis using tissue and single cell transcriptomics. Boufaied N; Nash C; Rochette A; Smith A; Orr B; Grace OC; Wang YC; Badescu D; Ragoussis J; Thomson AA Sci Rep; 2017 Nov; 7(1):16385. PubMed ID: 29180763 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional profiling of inductive mesenchyme to identify molecules involved in prostate development and disease. Vanpoucke G; Orr B; Grace OC; Chan R; Ashley GR; Williams K; Franco OE; Hayward SW; Thomson AA Genome Biol; 2007; 8(10):R213. PubMed ID: 17922897 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide analysis of androgen receptor binding and transcriptomic analysis in mesenchymal subsets during prostate development. Nash C; Boufaied N; Badescu D; Wang YC; Paliouras M; Trifiro M; Ragoussis I; Thomson AA Dis Model Mech; 2019 Jul; 12(7):. PubMed ID: 31350272 [TBL] [Abstract][Full Text] [Related]
4. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Dong J; Hu Y; Fan X; Wu X; Mao Y; Hu B; Guo H; Wen L; Tang F Genome Biol; 2018 Mar; 19(1):31. PubMed ID: 29540203 [TBL] [Abstract][Full Text] [Related]
5. Identification of EphrinB1 expression in prostatic mesenchyme and a role for EphB-EphrinB signalling in prostate development. Ashley GR; Grace OC; Vanpoucke G; Thomson AA Differentiation; 2010; 80(2-3):89-98. PubMed ID: 20633976 [TBL] [Abstract][Full Text] [Related]
6. Expression of pleiotrophin in the prostate is androgen regulated and it functions as an autocrine regulator of mesenchyme and cancer associated fibroblasts and as a paracrine regulator of epithelia. Orr B; Vanpoucke G; Grace OC; Smith L; Anderson RA; Riddick AC; Franco OE; Hayward SW; Thomson AA Prostate; 2011 Feb; 71(3):305-17. PubMed ID: 20812209 [TBL] [Abstract][Full Text] [Related]
7. Regulation of Fgf10 gene expression in the prostate: identification of transforming growth factor-beta1 and promoter elements. Tomlinson DC; Grindley JC; Thomson AA Endocrinology; 2004 Apr; 145(4):1988-95. PubMed ID: 14726452 [TBL] [Abstract][Full Text] [Related]
8. A role for notch signaling in stromal survival and differentiation during prostate development. Orr B; Grace OC; Vanpoucke G; Ashley GR; Thomson AA Endocrinology; 2009 Jan; 150(1):463-72. PubMed ID: 18801907 [TBL] [Abstract][Full Text] [Related]
9. Identification of stromally expressed molecules in the prostate by tag-profiling of cancer-associated fibroblasts, normal fibroblasts and fetal prostate. Orr B; Riddick AC; Stewart GD; Anderson RA; Franco OE; Hayward SW; Thomson AA Oncogene; 2012 Mar; 31(9):1130-42. PubMed ID: 21804603 [TBL] [Abstract][Full Text] [Related]
10. The single-cell transcriptional landscape of mammalian organogenesis. Cao J; Spielmann M; Qiu X; Huang X; Ibrahim DM; Hill AJ; Zhang F; Mundlos S; Christiansen L; Steemers FJ; Trapnell C; Shendure J Nature; 2019 Feb; 566(7745):496-502. PubMed ID: 30787437 [TBL] [Abstract][Full Text] [Related]
11. The role of smooth muscle in regulating prostatic induction. Thomson AA; Timms BG; Barton L; Cunha GR; Grace OC Development; 2002 Apr; 129(8):1905-12. PubMed ID: 11934856 [TBL] [Abstract][Full Text] [Related]
12. Instructive induction of prostate growth and differentiation by a defined urogenital sinus mesenchyme. Timms BG; Lee CW; Aumüller G; Seitz J Microsc Res Tech; 1995 Mar; 30(4):319-32. PubMed ID: 7606051 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution. Khalyfa A; Warren W; Andrade J; Bottoms CA; Rice ES; Cortese R; Kheirandish-Gozal L; Gozal D Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383883 [TBL] [Abstract][Full Text] [Related]
18. Liu C; Sello CT; Sun Y; Zhou Y; Lu H; Sui Y; Hu J; Xu C; Sun Y; Liu J; Li S; Zhang Y; Zhang K Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326614 [TBL] [Abstract][Full Text] [Related]
19. RNA-Seq analysis on chicken taste sensory organs: An ideal system to study organogenesis. Cui X; Marshall B; Shi N; Chen SY; Rekaya R; Liu HX Sci Rep; 2017 Aug; 7(1):9131. PubMed ID: 28831098 [TBL] [Abstract][Full Text] [Related]
20. Exosomal MicroRNA Transport from Salivary Mesenchyme Regulates Epithelial Progenitor Expansion during Organogenesis. Hayashi T; Lombaert IM; Hauser BR; Patel VN; Hoffman MP Dev Cell; 2017 Jan; 40(1):95-103. PubMed ID: 28041903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]