These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29180786)

  • 1. New design model for high efficiency cylindrical diffractive microlenses.
    Li Y; Zhao H; Feng SF; Ye JS; Wang XK; Sun WF; Han P; Zhang Y
    Sci Rep; 2017 Nov; 7(1):16334. PubMed ID: 29180786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of microlenses with long focal depth based on the general focal length function.
    Lin J; Liu J; Ye J; Liu S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1747-51. PubMed ID: 17491644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of improved first Rayleigh-Sommerfeld method to analyze the performance of cylindrical microlenses with different f-numbers.
    Ye JS; Gu BY; Dong BZ; Liu ST
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):862-9. PubMed ID: 15898545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design method for small-f-number microlenses based on a finite thickness model in combination with the Yang-Gu phase-retrieval algorithm.
    Rydberg C; Gu BY; Yang GZ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):517-21. PubMed ID: 17206268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between broadband Bessel beam launchers based on either Bessel or Hankel aperture distribution for millimeter wave short pulse generation.
    Pavone SC; Mazzinghi A; Freni A; Albani M
    Opt Express; 2017 Aug; 25(16):19548-19560. PubMed ID: 29041148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of all-glass multilayer phase gratings for cylindrical microlenses.
    Hudelist F; Waddie AJ; Taghizadeh MR
    Opt Lett; 2009 Jun; 34(11):1681-3. PubMed ID: 19488147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refractive and diffractive properties of planar micro-optical elements.
    Rossi M; Kunz RE; Herzig HP
    Appl Opt; 1995 Sep; 34(26):5996-6007. PubMed ID: 21060437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved first Rayleigh-sommerfeld method for analysis of cylindrical microlenses with small f-numbers.
    Ye JS; Gu BY; Dong BZ; Liu ST
    Opt Lett; 2004 Oct; 29(20):2345-7. PubMed ID: 15532262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination.
    Wang SQ; Liu J; Gu BY; Wang YQ; Hu B; Sun XD; Di S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):512-6. PubMed ID: 17206267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theories for the design of a hybrid refractive-diffractive superresolution lens with high numerical aperture.
    Liu H; Yan Y; Yi D; Jin G
    J Opt Soc Am A Opt Image Sci Vis; 2003 May; 20(5):913-24. PubMed ID: 12747438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations.
    Ye JS; Dong BZ; Gu BY; Liu ST
    Appl Opt; 2004 Sep; 43(27):5183-92. PubMed ID: 15473238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse scattering with a non self-adjoint variational formulation.
    Marks DL; Smith DR
    Opt Express; 2018 Mar; 26(6):7655-7671. PubMed ID: 29609318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical mode expansion method for analyzing elliptic cylindrical objects in a layered background.
    Shi H; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):630-6. PubMed ID: 26366773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method.
    Chiu CC; Lee YC
    Opt Express; 2012 Mar; 20(6):5922-35. PubMed ID: 22418468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model Similarity, Model Selection, and Attribute Classification.
    Ma W; Iaconangelo C; de la Torre J
    Appl Psychol Meas; 2016 May; 40(3):200-217. PubMed ID: 29881048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallic nanowires can lead to wavelength-scale microlenses and microlens arrays.
    Zaiba S; Kouriba T; Ziane O; Stéphan O; Bosson J; Vitrant G; Baldeck PL
    Opt Express; 2012 Jul; 20(14):15516-21. PubMed ID: 22772246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implicit high-order unconditionally stable complex envelope algorithm for solving the time-dependent Maxwell's equations.
    Chen S; Zang W; Schülzgen A; Liu J; Han L; Zeng Y; Tian J; Song F; Moloney JV; Peyghambarian N
    Opt Lett; 2008 Dec; 33(23):2755-7. PubMed ID: 19037416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance-domain diffractive microlens arrays.
    Barlev O; Golub MA
    Appl Opt; 2018 Jul; 57(19):5299-5306. PubMed ID: 30117818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microlenses with defined contour shapes.
    Cadarso VJ; Perera-Núñez J; Jacot-Descombes L; Pfeiffer K; Ostrzinski U; Voigt A; Llobera A; Grützer G; Brugger J
    Opt Express; 2011 Sep; 19(19):18665-70. PubMed ID: 21935235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.