These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29180809)

  • 21. TNA synthesis by DNA polymerases.
    Chaput JC; Szostak JW
    J Am Chem Soc; 2003 Aug; 125(31):9274-5. PubMed ID: 12889939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence.
    DeLucia AM; Grindley ND; Joyce CM
    Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.
    Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.8.1-19. PubMed ID: 24961723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An in vitro selection system for TNA.
    Ichida JK; Zou K; Horhota A; Yu B; McLaughlin LW; Szostak JW
    J Am Chem Soc; 2005 Mar; 127(9):2802-3. PubMed ID: 15740086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A general strategy for expanding polymerase function by droplet microfluidics.
    Larsen AC; Dunn MR; Hatch A; Sau SP; Youngbull C; Chaput JC
    Nat Commun; 2016 Apr; 7():11235. PubMed ID: 27044725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of threose nucleic acid (TNA) triphosphates and oligonucleotides by polymerase-mediated primer extension.
    Zhang S; Yu H; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2013 Mar; Chapter 4():4.54.1-4.54.17. PubMed ID: 23512696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of threose nucleic acid (TNA) phosphoramidite monomers and oligonucleotide polymers.
    Zhang S; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2012 Sep; Chapter 4():Unit4.51. PubMed ID: 22956457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystallographic analysis of engineered polymerases synthesizing phosphonomethylthreosyl nucleic acid.
    Hajjar M; Chim N; Liu C; Herdewijn P; Chaput JC
    Nucleic Acids Res; 2022 Sep; 50(17):9663-9674. PubMed ID: 36124684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular simulation of cyclohexanyl nucleic acid (CNA) duplexes with CNA, DNA and RNA and CNA triloop and tetraloop hairpin structures.
    Froeyen M; Abu el Asrar R; Abramov M; Herdewijn P
    Bioorg Med Chem; 2016 Apr; 24(8):1778-85. PubMed ID: 26968651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered Polymerases with Altered Substrate Specificity: Expression and Purification.
    Nikoomanzar A; Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2017 Jun; 69():4.75.1-4.75.20. PubMed ID: 28628207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward safe genetically modified organisms through the chemical diversification of nucleic acids.
    Herdewijn P; Marlière P
    Chem Biodivers; 2009 Jun; 6(6):791-808. PubMed ID: 19554563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A parallel stranded G-quadruplex composed of threose nucleic acid (TNA).
    Liao JY; Anosova I; Bala S; Van Horn WD; Chaput JC
    Biopolymers; 2017 Mar; 107(3):. PubMed ID: 27718227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. XNA Synthesis and Reverse Transcription by Engineered Thermophilic Polymerases.
    Cozens C; Pinheiro VB
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e47. PubMed ID: 30039931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).
    Zhang S; Chaput JC
    Bioorg Med Chem Lett; 2013 Mar; 23(5):1447-9. PubMed ID: 23352269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates.
    Arnold E; Ding J; Hughes SH; Hostomsky Z
    Curr Opin Struct Biol; 1995 Feb; 5(1):27-38. PubMed ID: 7539708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of a TNA-TNA complex in solution: NMR study of the octamer duplex derived from alpha-(L)-threofuranosyl-(3'-2')-CGAATTCG.
    Ebert MO; Mang C; Krishnamurthy R; Eschenmoser A; Jaun B
    J Am Chem Soc; 2008 Nov; 130(45):15105-15. PubMed ID: 18928287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural mechanism for coordination of proofreading and polymerase activities in archaeal DNA polymerases.
    Kuroita T; Matsumura H; Yokota N; Kitabayashi M; Hashimoto H; Inoue T; Imanaka T; Kai Y
    J Mol Biol; 2005 Aug; 351(2):291-8. PubMed ID: 16019029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on suitability of KOD DNA polymerase for enzymatic production of artificial nucleic acids using base/sugar modified nucleoside triphosphates.
    Kuwahara M; Takano Y; Kasahara Y; Nara H; Ozaki H; Sawai H; Sugiyama A; Obika S
    Molecules; 2010 Nov; 15(11):8229-40. PubMed ID: 21076389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.