These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 2918090)

  • 21. Ionotropic glutamate receptor GluR2/3-immunoreactive neurons in the cat, rabbit, and hamster superficial superior colliculus.
    Park WM; Kim MJ; Jeon CJ
    Neurosci Res; 2004 Jun; 49(2):139-55. PubMed ID: 15140557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of immunoreactive GABA and enkephalin and NADPH-diaphorase-positive neurons in fetal striatal grafts in the quinolinic-acid-lesioned rat neostriatum.
    Roberts RC; Difiglia M
    J Comp Neurol; 1988 Aug; 274(3):406-21. PubMed ID: 2975675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of renal calbindin-D28K.
    Hemmingsen C
    Pharmacol Toxicol; 2000; 87 Suppl 3():5-30. PubMed ID: 11097107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex.
    Mikkonen M; Soininen H; Pitkänen A
    J Comp Neurol; 1997 Nov; 388(1):64-88. PubMed ID: 9364239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity.
    Sloviter RS
    J Comp Neurol; 1989 Feb; 280(2):183-96. PubMed ID: 2925892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calbindin-D28K expression induced by glial cell line-derived neurotrophic factor in substantia nigra neurons dependent on PI3K/Akt/NF-kappaB signaling pathway.
    Wang HJ; Cao JP; Yu JK; Zhang LC; Jiang ZJ; Gao DS
    Eur J Pharmacol; 2008 Oct; 595(1-3):7-12. PubMed ID: 18703048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large neurons in the primate neostriatum examined with the combined Golgi-electron microscopic method.
    DiFiglia M; Carey J
    J Comp Neurol; 1986 Feb; 244(1):36-52. PubMed ID: 3950089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calbindin-D28K and ischemic damage of pyramidal cells in rat hippocampus.
    Rami A; Rabié A; Thomasset M; Krieglstein J
    J Neurosci Res; 1992 Jan; 31(1):89-95. PubMed ID: 1613825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.
    Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF
    J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subcellular localization of GABAB receptor subunits in rat globus pallidus.
    Chen L; Boyes J; Yung WH; Bolam JP
    J Comp Neurol; 2004 Jun; 474(3):340-52. PubMed ID: 15174078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.
    Seress L; Léránth C; Frotscher M
    J Hirnforsch; 1994; 35(4):473-86. PubMed ID: 7884210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. D2 dopamine receptor protein location: Golgi impregnation-gold toned and ultrastructural analysis of the rat neostriatum.
    Fisher RS; Levine MS; Sibley DR; Ariano MA
    J Neurosci Res; 1994 Aug; 38(5):551-64. PubMed ID: 7529326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental pattern of calbindin D28k protein expression in the rat striatum and cerebral cortex.
    Litwinowicz B; Labuda C; Kowiański P; Spodnik JH; Ludkiewicz B; Wójcik S; Moryś J
    Folia Morphol (Warsz); 2003 Nov; 62(4):327-9. PubMed ID: 14655112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ventral striatopallidal parts of the basal ganglia in the rat: I. Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity.
    Zahm DS; Heimer L
    J Comp Neurol; 1988 Jun; 272(4):516-35. PubMed ID: 2458391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre- and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys.
    Charara A; Heilman TC; Levey AI; Smith Y
    Neuroscience; 2000; 95(1):127-40. PubMed ID: 10619469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterogeneous development of calbindin-D28K expression in the striatal matrix.
    Liu FC; Graybiel AM
    J Comp Neurol; 1992 Jun; 320(3):304-22. PubMed ID: 1351896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin.
    Kawaguchi Y; Wilson CJ; Emson PC
    J Neurosci; 1990 Oct; 10(10):3421-38. PubMed ID: 1698947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenosine A2A receptor in the monkey basal ganglia: ultrastructural localization and colocalization with the metabotropic glutamate receptor 5 in the striatum.
    Bogenpohl JW; Ritter SL; Hall RA; Smith Y
    J Comp Neurol; 2012 Feb; 520(3):570-89. PubMed ID: 21858817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calbindin-immunoreactive sensory neurons of dorsal root ganglion project to skeletal muscle in the chick.
    Philippe E; Droz B
    J Comp Neurol; 1989 May; 283(1):153-60. PubMed ID: 2471716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease.
    Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M
    Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.