These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29181291)

  • 21. Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state: experimental evidence and theoretical insight.
    Zhang X; Ding B; Bian Y; Jiang D; Parkin IP
    Nanotechnology; 2018 Nov; 29(48):485601. PubMed ID: 30215618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Structure Hierarchy for Superhydrophobic Polymer Surfaces Studied by Droplet Evaporation.
    Okulova N; Johansen P; Christensen L; Taboryski R
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient pesticide formulation and regulation mechanism for improving the deposition of droplets on the leaves of rice (Oryza sativa L.).
    Zheng L; Cao C; Chen Z; Cao L; Huang Q; Song B
    Pest Manag Sci; 2021 Jul; 77(7):3198-3207. PubMed ID: 33682990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.
    Jung YC; Bhushan B
    J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Surfaces of the
    Rodríguez S; Rocha J; Fernandes M; Ravishankar AP; Steinbrück N; Cruz R; Bacelar E; Kickelbick G; Anand S; Crespí AL; Casal S; de Zea Bermudez V
    Langmuir; 2021 Feb; 37(6):2011-2028. PubMed ID: 33533623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser.
    Zhang D; Chen F; Yang Q; Yong J; Bian H; Ou Y; Si J; Meng X; Hou X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4905-12. PubMed ID: 22909564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces.
    Yin C; Wang T; Che Z; Jia M; Sun K
    Langmuir; 2019 Dec; 35(49):16201-16209. PubMed ID: 31738548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.
    Yamamoto M; Nishikawa N; Mayama H; Nonomura Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2015 Jul; 31(26):7355-63. PubMed ID: 26075949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces.
    Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobic surfaces: From nature to biomimetic through VOF simulation.
    Liu C; Zhu L; Bu W; Liang Y
    Micron; 2018 Apr; 107():94-100. PubMed ID: 29482103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy.
    Kim KW
    Micron; 2008 Oct; 39(7):976-84. PubMed ID: 18037304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser-Induced Fast Assembly of Wettability-Finely-Tunable Superhydrophobic Surfaces for Lossless Droplet Transfer.
    Fan L; Yan Q; Qian Q; Zhang S; Wu L; Peng Y; Jiang S; Guo L; Yao J; Wu H
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36246-36257. PubMed ID: 35881172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.