These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 29181462)
1. Chemical amplification accelerates reactive oxygen species triggered polymeric degradation. Lee S; Stubelius A; Olejniczak J; Jang H; Huu VAN; Almutairi A Biomater Sci; 2017 Dec; 6(1):107-114. PubMed ID: 29181462 [TBL] [Abstract][Full Text] [Related]
2. Dual-responsive nanoparticles release cargo upon exposure to matrix metalloproteinase and reactive oxygen species. Daniel KB; Callmann CE; Gianneschi NC; Cohen SM Chem Commun (Camb); 2016 Feb; 52(10):2126-8. PubMed ID: 26696280 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications. Jäger E; Höcherl A; Janoušková O; Jäger A; Hrubý M; Konefał R; Netopilik M; Pánek J; Šlouf M; Ulbrich K; Štěpánek P Nanoscale; 2016 Apr; 8(13):6958-63. PubMed ID: 26961769 [TBL] [Abstract][Full Text] [Related]
4. Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Xu Q; He C; Xiao C; Chen X Macromol Biosci; 2016 May; 16(5):635-46. PubMed ID: 26891447 [TBL] [Abstract][Full Text] [Related]
5. ROS-Responsive Polymeric Micelle for Improving Pesticides Efficiency and Intelligent Release. Li R; Xie H; Zhang C; Sun Y; Yin H J Agric Food Chem; 2020 Aug; 68(34):9052-9060. PubMed ID: 32806117 [TBL] [Abstract][Full Text] [Related]
6. Light-triggered chemical amplification to accelerate degradation and release from polymeric particles. Olejniczak J; Nguyen Huu VA; Lux J; Grossman M; He S; Almutairi A Chem Commun (Camb); 2015 Dec; 51(95):16980-3. PubMed ID: 26445896 [TBL] [Abstract][Full Text] [Related]
7. [Reactive oxygen species stimuli-responsive nanocarriers]. Zhou W; Yang K; Zhao B; Zhang L; Zhang Y Se Pu; 2021 Feb; 39(2):118-124. PubMed ID: 34227343 [TBL] [Abstract][Full Text] [Related]
8. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. de Gracia Lux C; Joshi-Barr S; Nguyen T; Mahmoud E; Schopf E; Fomina N; Almutairi A J Am Chem Soc; 2012 Sep; 134(38):15758-64. PubMed ID: 22946840 [TBL] [Abstract][Full Text] [Related]
9. Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. Heffernan MJ; Murthy N Bioconjug Chem; 2005; 16(6):1340-2. PubMed ID: 16287226 [TBL] [Abstract][Full Text] [Related]
10. Reactive Oxygen Species Responsive Naturally Occurring Phenolic-Based Polymeric Prodrug. Berwin Singh SV; Adam AG; Tripathy N; Lee D; Khang G Adv Exp Med Biol; 2018; 1078():291-301. PubMed ID: 30357629 [TBL] [Abstract][Full Text] [Related]
11. Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells. Shenoi RA; Narayanannair JK; Hamilton JL; Lai BF; Horte S; Kainthan RK; Varghese JP; Rajeev KG; Manoharan M; Kizhakkedathu JN J Am Chem Soc; 2012 Sep; 134(36):14945-57. PubMed ID: 22906064 [TBL] [Abstract][Full Text] [Related]
12. ROS-triggered and regenerating anticancer nanosystem: an effective strategy to subdue tumor's multidrug resistance. Su Z; Chen M; Xiao Y; Sun M; Zong L; Asghar S; Dong M; Li H; Ping Q; Zhang C J Control Release; 2014 Dec; 196():370-83. PubMed ID: 25278256 [TBL] [Abstract][Full Text] [Related]
13. Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery. Antoniraj MG; Ayyavu M; Henry LJK; Nageshwar Rao G; Natesan S; Sundar DS; Kandasamy R Drug Dev Ind Pharm; 2018 Mar; 44(3):365-376. PubMed ID: 28835136 [TBL] [Abstract][Full Text] [Related]
14. Reactive oxygen species responsive nanoplatforms as smart drug delivery systems for gastrointestinal tract targeting. Bertoni S; Machness A; Tiboni M; Bártolo R; Santos HA Biopolymers; 2020 Jan; 111(1):e23336. PubMed ID: 31724750 [TBL] [Abstract][Full Text] [Related]
15. Temperature-sensitive copolymer-coated fluorescent mesoporous silica nanoparticles as a reactive oxygen species activated drug delivery system. Yu F; Wu H; Tang Y; Xu Y; Qian X; Zhu W Int J Pharm; 2018 Jan; 536(1):11-20. PubMed ID: 29146540 [TBL] [Abstract][Full Text] [Related]
16. Reactive oxygen species (ROS)-responsive ferrocene-polymer-based nanoparticles for controlled release of drugs. Na Y; Lee JS; Woo J; Ahn S; Lee E; Il Choi W; Sung D J Mater Chem B; 2020 Mar; 8(9):1906-1913. PubMed ID: 32043093 [TBL] [Abstract][Full Text] [Related]
17. Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis. Dou Y; Chen Y; Zhang X; Xu X; Chen Y; Guo J; Zhang D; Wang R; Li X; Zhang J Biomaterials; 2017 Oct; 143():93-108. PubMed ID: 28778000 [TBL] [Abstract][Full Text] [Related]
18. Inflammation responsive logic gate nanoparticles for the delivery of proteins. Mahmoud EA; Sankaranarayanan J; Morachis JM; Kim G; Almutairi A Bioconjug Chem; 2011 Jul; 22(7):1416-21. PubMed ID: 21688843 [TBL] [Abstract][Full Text] [Related]
19. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Aluri R; Jayakannan M Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504 [TBL] [Abstract][Full Text] [Related]
20. Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery. Li L; Bai Z; Levkin PA Biomaterials; 2013 Nov; 34(33):8504-10. PubMed ID: 23932249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]