These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 29181613)

  • 1. SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research.
    Yaniv Z; Lowekamp BC; Johnson HJ; Beare R
    J Digit Imaging; 2018 Jun; 31(3):290-303. PubMed ID: 29181613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Design of SimpleITK.
    Lowekamp BC; Chen DT; Ibáñez L; Blezek D
    Front Neuroinform; 2013; 7():45. PubMed ID: 24416015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloud-enabled Biodepot workflow builder integrates image processing using Fiji with reproducible data analysis using Jupyter notebooks.
    Hung LH; Straw E; Reddy S; Schmitz R; Colburn Z; Yeung KY
    Sci Rep; 2022 Sep; 12(1):14920. PubMed ID: 36056115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks.
    Rosenberg DM; Horn CC
    J Neurophysiol; 2016 Aug; 116(2):252-62. PubMed ID: 27098025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage.
    Bonaretti S; Gold GE; Beaupre GS
    PLoS One; 2020; 15(1):e0226501. PubMed ID: 31978052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image Segmentation, Registration and Characterization in R with SimpleITK.
    Beare R; Lowekamp B; Yaniv Z
    J Stat Softw; 2018 Aug; 86():. PubMed ID: 30288153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational reproducibility of Jupyter notebooks from biomedical publications.
    Samuel S; Mietchen D
    Gigascience; 2024 Jan; 13():. PubMed ID: 38206590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducible Bioconductor workflows using browser-based interactive notebooks and containers.
    Almugbel R; Hung LH; Hu J; Almutairy A; Ortogero N; Tamta Y; Yeung KY
    J Am Med Inform Assoc; 2018 Jan; 25(1):4-12. PubMed ID: 29092073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics.
    Zhang L; Fried DV; Fave XJ; Hunter LA; Yang J; Court LE
    Med Phys; 2015 Mar; 42(3):1341-53. PubMed ID: 25735289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JBrowse Jupyter: a Python interface to JBrowse 2.
    De Jesus Martinez T; Hershberg EA; Guo E; Stevens GJ; Diesh C; Xie P; Bridge C; Cain S; Haw R; Buels RM; Stein LD; Holmes IH
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36648320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data.
    Feng D; Whitehurst CE; Shan D; Hill JD; Yue YG
    BMC Genomics; 2019 Aug; 20(1):676. PubMed ID: 31455220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using interactive Jupyter Notebooks and BioConda for FAIR and reproducible biomolecular simulation workflows.
    Bayarri G; Andrio P; Gelpí JL; Hospital A; Orozco M
    PLoS Comput Biol; 2024 Jun; 20(6):e1012173. PubMed ID: 38900779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scientific Notebook Software: Applications for Academic Radiology.
    Richardson ML; Amini B
    Curr Probl Diagn Radiol; 2018 Nov; 47(6):368-377. PubMed ID: 29122394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CellWalker: a user-friendly and modular computational pipeline for morphological analysis of microscopy images.
    Khare H; Dongo Mendoza N; Zurzolo C
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38060265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatics recipes: creating, executing and distributing reproducible data analysis workflows.
    Aberra N; Sebastian A; Maloy AP; Rees CB; Bartron ML; Albert I
    BMC Bioinformatics; 2020 Jul; 21(1):292. PubMed ID: 32640986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymorph segmentation representation for medical image computing.
    Pinter C; Lasso A; Fichtinger G
    Comput Methods Programs Biomed; 2019 Apr; 171():19-26. PubMed ID: 30902247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SimITK: visual programming of the ITK image-processing library within Simulink.
    Dickinson AW; Abolmaesumi P; Gobbi DG; Mousavi P
    J Digit Imaging; 2014 Apr; 27(2):220-30. PubMed ID: 24402456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OpSeF: Open Source Python Framework for Collaborative Instance Segmentation of Bioimages.
    Rasse TM; Hollandi R; Horvath P
    Front Bioeng Biotechnol; 2020; 8():558880. PubMed ID: 33117778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Teaching Radiology Physics Interactively with Scientific Notebook Software.
    Richardson ML; Amini B
    Acad Radiol; 2018 Jun; 25(6):801-810. PubMed ID: 29751860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.