BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29181748)

  • 1. A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments.
    Thon MP; Ford HZ; Gee MW; Myerscough MR
    Bull Math Biol; 2018 Jan; 80(1):175-214. PubMed ID: 29181748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Spatially Resolved and Quantitative Model of Early Atherosclerosis.
    Thon MP; Myerscough MR; Gee MW
    Bull Math Biol; 2019 Oct; 81(10):4022-4068. PubMed ID: 31392575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifurcation and dynamics in a mathematical model of early atherosclerosis: How acute inflammation drives lesion development.
    Chalmers AD; Cohen A; Bursill CA; Myerscough MR
    J Math Biol; 2015 Dec; 71(6-7):1451-80. PubMed ID: 25732771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear dynamics of early atherosclerotic plaque formation may determine the efficacy of high density lipoproteins (HDL) in plaque regression.
    Chalmers AD; Bursill CA; Myerscough MR
    PLoS One; 2017; 12(11):e0187674. PubMed ID: 29161303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of necrotic cores in atherosclerotic plaque.
    Fok PW
    Math Med Biol; 2012 Dec; 29(4):301-27. PubMed ID: 21908792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lipid-structured model for macrophage populations in atherosclerotic plaques.
    Ford HZ; Byrne HM; Myerscough MR
    J Theor Biol; 2019 Oct; 479():48-63. PubMed ID: 31319051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging.
    Ouimet T; Lancelot E; Hyafil F; Rienzo M; Deux F; Lemaître M; Duquesnoy S; Garot J; Roques BP; Michel JB; Corot C; Ballet S
    Mol Pharm; 2012 Apr; 9(4):850-61. PubMed ID: 22352457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of age, diet, and type 2 diabetes on the development and FDG uptake of atherosclerotic plaques.
    Silvola JM; Saraste A; Laitinen I; Savisto N; Laine VJ; Heinonen SE; Ylä-Herttuala S; Saukko P; Nuutila P; Roivainen A; Knuuti J
    JACC Cardiovasc Imaging; 2011 Dec; 4(12):1294-301. PubMed ID: 22172786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage polarization and acceleration of atherosclerotic plaques in a swine model.
    Lee SG; Oh J; Bong SK; Kim JS; Park S; Kim S; Park S; Lee SH; Jang Y
    PLoS One; 2018; 13(3):e0193005. PubMed ID: 29561847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Immunohistochemical study of the role of mast cells and macrophages in the process of angiogenesis in the atherosclerotic plaques in patients with metabolic syndrome].
    Munteanu AI; Raica M; Zota EG
    Arkh Patol; 2016; 78(2):19-28. PubMed ID: 27070771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale model of atherosclerotic plaque formation at its early stage.
    Di Tomaso G; Díaz-Zuccarini V; Pichardo-Almarza C
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3460-3. PubMed ID: 21859610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lipid-Structured Model of Atherosclerotic Plaque Macrophages with Lipid-Dependent Kinetics.
    Watson MG; Chambers KL; Myerscough MR
    Bull Math Biol; 2023 Aug; 85(9):85. PubMed ID: 37581687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The affection of the disturbance of the hydrodynamics of blood in case of stress on pathological increase of level of low density lipoproteins in blood. The formation of cylindrical plaques, and their participation in the development of acute ischemic disorders of heart and brain.
    Rusanov SE
    Med Hypotheses; 2017 Sep; 106():61-70. PubMed ID: 28818274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin E1 dose-dependently promotes stability of atherosclerotic plaque in a rabbit model.
    Bai W; Zheng X; Zhou L; Li H
    Can J Physiol Pharmacol; 2012 Feb; 90(2):131-9. PubMed ID: 22309388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophage Anti-inflammatory Behaviour in a Multiphase Model of Atherosclerotic Plaque Development.
    Ahmed IU; Byrne HM; Myerscough MR
    Bull Math Biol; 2023 Mar; 85(5):37. PubMed ID: 36991234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipin-1 contributes to modified low-density lipoprotein-elicited macrophage pro-inflammatory responses.
    Navratil AR; Vozenilek AE; Cardelli JA; Green JM; Thomas MJ; Sorci-Thomas MG; Orr AW; Woolard MD
    Atherosclerosis; 2015 Oct; 242(2):424-32. PubMed ID: 26288136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage subsets in atherosclerosis.
    Chinetti-Gbaguidi G; Colin S; Staels B
    Nat Rev Cardiol; 2015 Jan; 12(1):10-7. PubMed ID: 25367649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid droplet-associated proteins in atherosclerosis (Review).
    Plakkal Ayyappan J; Paul A; Goo YH
    Mol Med Rep; 2016 Jun; 13(6):4527-34. PubMed ID: 27082419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular hydrogen stabilizes atherosclerotic plaque in low-density lipoprotein receptor-knockout mice.
    Song G; Zong C; Zhang Z; Yu Y; Yao S; Jiao P; Tian H; Zhai L; Zhao H; Tian S; Zhang X; Wu Y; Sun X; Qin S
    Free Radic Biol Med; 2015 Oct; 87():58-68. PubMed ID: 26117323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling Preferential Phagocytosis in Atherosclerosis: Delineating Timescales in Plaque Development.
    Lui G; Myerscough MR
    Bull Math Biol; 2021 Aug; 83(9):96. PubMed ID: 34390421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.