These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 29181865)
21. Screening Viologen Derivatives for Neutral Aqueous Organic Redox Flow Batteries. Liu Y; Li Y; Zuo P; Chen Q; Tang G; Sun P; Yang Z; Xu T ChemSusChem; 2020 May; 13(9):2245-2249. PubMed ID: 32162480 [TBL] [Abstract][Full Text] [Related]
22. Benzidine Derivatives: A Class of High Redox Potential Molecules for Aqueous Organic Flow Batteries. Liu X; Li T; Zhang C; Li X Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307796. PubMed ID: 37389543 [TBL] [Abstract][Full Text] [Related]
23. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Janoschka T; Martin N; Hager MD; Schubert US Angew Chem Int Ed Engl; 2016 Nov; 55(46):14427-14430. PubMed ID: 27754587 [TBL] [Abstract][Full Text] [Related]
24. On the Tunability of Toxicity for Viologen-Derivatives as Anolyte for Neutral Aqueous Organic Redox Flow Batteries. de la Parra S; Tamayo-Ramos JA; Rubio-Presa R; Perez-Antolin D; Ruiz V; Sanz R; Rumbo C; Ventosa E ChemSusChem; 2023 Dec; 16(24):e202300626. PubMed ID: 37399239 [TBL] [Abstract][Full Text] [Related]
25. Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries. Huang S; Zhang H; Salla M; Zhuang J; Zhi Y; Wang X; Wang Q Nat Commun; 2022 Aug; 13(1):4746. PubMed ID: 35961966 [TBL] [Abstract][Full Text] [Related]
26. Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries. Turner NA; Freeman MB; Pratt HD; Crockett AE; Jones DS; Anstey MR; Anderson TM; Bejger CM Chem Commun (Camb); 2020 Mar; 56(18):2739-2742. PubMed ID: 32022001 [TBL] [Abstract][Full Text] [Related]
27. High-Voltage Catholyte for High-Energy-Density Nonaqueous Redox Flow Battery. McGrath J; Gautam RK; Wang X; Jiang JJ Angew Chem Int Ed Engl; 2024 Sep; 63(37):e202407906. PubMed ID: 38842475 [TBL] [Abstract][Full Text] [Related]
29. Study of Anion Exchange Membrane Properties Incorporating Tsehaye MT; Yang X; Janoschka T; Hager MD; Schubert US; Alloin F; Iojoiu C Membranes (Basel); 2021 May; 11(5):. PubMed ID: 34070143 [TBL] [Abstract][Full Text] [Related]
30. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Wei X; Xu W; Vijayakumar M; Cosimbescu L; Liu T; Sprenkle V; Wang W Adv Mater; 2014 Dec; 26(45):7649-53. PubMed ID: 25327755 [TBL] [Abstract][Full Text] [Related]
31. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor. Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675 [TBL] [Abstract][Full Text] [Related]
32. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery. Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721 [TBL] [Abstract][Full Text] [Related]
33. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery. Janoschka T; Friebe C; Hager MD; Martin N; Schubert US ChemistryOpen; 2017 Apr; 6(2):216-220. PubMed ID: 28413754 [TBL] [Abstract][Full Text] [Related]
34. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH. Yang L; Hao Y; Lin J; Li K; Luo S; Lei J; Han Y; Yuan R; Liu G; Ren B; Chen J Adv Mater; 2022 Feb; 34(7):e2107425. PubMed ID: 34866255 [TBL] [Abstract][Full Text] [Related]
35. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance. Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610 [TBL] [Abstract][Full Text] [Related]
36. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries. Yan Y; Vaid TP; Sanford MS J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474 [TBL] [Abstract][Full Text] [Related]
37. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries. Zhu F; Guo W; Fu Y Chem Asian J; 2023 Jan; 18(2):e202201098. PubMed ID: 36454229 [TBL] [Abstract][Full Text] [Related]
38. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures. Tracy JS; Horst ES; Roytman VA; Toste FD Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695 [TBL] [Abstract][Full Text] [Related]
39. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte. Liu C; Shamie JS; Shaw LL; Sprenkle VL ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551 [TBL] [Abstract][Full Text] [Related]
40. New phenazine based anolyte material for high voltage organic redox flow batteries. Romadina EI; Komarov DS; Stevenson KJ; Troshin PA Chem Commun (Camb); 2021 Mar; 57(24):2986-2989. PubMed ID: 33634297 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]