These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 29181888)
1. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics. Campos JO; Dos Santos RW; Sundnes J; Rocha BM Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2948. PubMed ID: 29181888 [TBL] [Abstract][Full Text] [Related]
2. A high-resolution computational model of the deforming human heart. Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753 [TBL] [Abstract][Full Text] [Related]
3. Augmented Lagrange methods for quasi-incompressible materials--applications to soft biological tissue. Brinkhues S; Klawonn A; Rheinbach O; Schröder J Int J Numer Method Biomed Eng; 2013 Mar; 29(3):332-50. PubMed ID: 23345136 [TBL] [Abstract][Full Text] [Related]
4. Algebraic multigrid preconditioner for the cardiac bidomain model. Plank G; Liebmann M; Weber dos Santos R; Vigmond EJ; Haase G IEEE Trans Biomed Eng; 2007 Apr; 54(4):585-96. PubMed ID: 17405366 [TBL] [Abstract][Full Text] [Related]
5. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics. Hadjicharalambous M; Lee J; Smith NP; Nordsletten DA Comput Methods Appl Mech Eng; 2014 Jun; 274(100):213-236. PubMed ID: 25187672 [TBL] [Abstract][Full Text] [Related]
6. Improving the stability of cardiac mechanical simulations. Land S; Niederer SA; Lamata P; Smith NP IEEE Trans Biomed Eng; 2015 Mar; 62(3):939-947. PubMed ID: 25474804 [TBL] [Abstract][Full Text] [Related]
7. Breaking the state of the heart: meshless model for cardiac mechanics. Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351 [TBL] [Abstract][Full Text] [Related]
8. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Santiago A; Aguado-Sierra J; Zavala-Aké M; Doste-Beltran R; Gómez S; Arís R; Cajas JC; Casoni E; Vázquez M Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3140. PubMed ID: 30117302 [TBL] [Abstract][Full Text] [Related]
9. Parallel multigrid preconditioner for the cardiac bidomain model. Weber dos Santos R; Plank G; Bauer S; Vigmond EJ IEEE Trans Biomed Eng; 2004 Nov; 51(11):1960-8. PubMed ID: 15536898 [TBL] [Abstract][Full Text] [Related]
10. On Solving Groundwater Flow and Transport Models with Algebraic Multigrid Preconditioning. Sbai MA; Larabi A Ground Water; 2021 Jan; 59(1):100-108. PubMed ID: 32436223 [TBL] [Abstract][Full Text] [Related]
11. An aneurysm-specific preconditioning technique for the acceleration of Newton-Krylov method with application in the simulation of blood flows. Liu Y; Qi F; Cai XC Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3771. PubMed ID: 37688432 [TBL] [Abstract][Full Text] [Related]
12. Solving the cardiac bidomain equations for discontinuous conductivities. Austin TM; Trew ML; Pullan AJ IEEE Trans Biomed Eng; 2006 Jul; 53(7):1265-72. PubMed ID: 16830931 [TBL] [Abstract][Full Text] [Related]
13. Reduced-order preconditioning for bidomain simulations. Deo M; Bauer S; Plank G; Vigmond E IEEE Trans Biomed Eng; 2007 May; 54(5):938-42. PubMed ID: 17518292 [TBL] [Abstract][Full Text] [Related]
14. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity. Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part II: Three dimensional formulation for thick ventricular wall segments. Horowitz A; Sheinman I; Lanir Y J Biomech Eng; 1988 Feb; 110(1):62-8. PubMed ID: 3347025 [TBL] [Abstract][Full Text] [Related]
16. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations. Tan NB; Huang TZ; Hu ZJ ScientificWorldJournal; 2013; 2013():486323. PubMed ID: 24235888 [TBL] [Abstract][Full Text] [Related]
17. A second-level diagonal preconditioner for single-step SNPBLUP. Vandenplas J; Calus MPL; Eding H; Vuik C Genet Sel Evol; 2019 Jun; 51(1):30. PubMed ID: 31238880 [TBL] [Abstract][Full Text] [Related]
18. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation. Augustin CM; Neic A; Liebmann M; Prassl AJ; Niederer SA; Haase G; Plank G J Comput Phys; 2016 Jan; 305():622-646. PubMed ID: 26819483 [TBL] [Abstract][Full Text] [Related]
19. Newton-Raphson preconditioner for Krylov type solvers on GPU devices. Kushida N Springerplus; 2016; 5(1):788. PubMed ID: 27386273 [TBL] [Abstract][Full Text] [Related]
20. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport. Detwiler RL; Mehl S; Rajaram H; Cheung WW Ground Water; 2002; 40(3):267-72. PubMed ID: 12019641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]