These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 29181974)
21. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Liu Q; Xu L; Zhang X; Li N; Zheng J; Guan M; Fang X; Wang C; Shu C Chem Asian J; 2013 Oct; 8(10):2370-6. PubMed ID: 23907978 [TBL] [Abstract][Full Text] [Related]
22. Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer. Jeong K; Park S; Lee YD; Kang CS; Kim HJ; Park H; Kwon IC; Kim J; Park CR; Kim S Colloids Surf B Biointerfaces; 2016 Aug; 144():303-310. PubMed ID: 27107384 [TBL] [Abstract][Full Text] [Related]
23. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy. Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626 [TBL] [Abstract][Full Text] [Related]
24. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy. Xue M; Zhao J; Zhan Z; Zhao S; Lan C; Ye F; Liang H Nanoscale; 2018 Oct; 10(38):18124-18130. PubMed ID: 30255925 [TBL] [Abstract][Full Text] [Related]
25. Rational engineering of semiconductor QDs enabling remarkable Shen Y; Sun Y; Yan R; Chen E; Wang H; Ye D; Xu JJ; Chen HY Biomaterials; 2017 Dec; 148():31-40. PubMed ID: 28961533 [TBL] [Abstract][Full Text] [Related]
26. A fluorescence-activatable tumor-reporting probe for precise photodynamic therapy. Li J; Wang T; Jiang F; Hong Z; Su X; Li S; Han S J Mater Chem B; 2021 Jul; 9(29):5829-5836. PubMed ID: 34254096 [TBL] [Abstract][Full Text] [Related]
27. A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy. Lin AL; Li SZ; Xu CH; Li XS; Zheng BY; Gu JJ; Ke MR; Huang JD Biomater Sci; 2018 Dec; 7(1):211-219. PubMed ID: 30426113 [TBL] [Abstract][Full Text] [Related]
28. Aptamer/photosensitizer hybridized mesoporous MnO Liu W; Zhang K; Zhuang L; Liu J; Zeng W; Shi J; Zhang Z Colloids Surf B Biointerfaces; 2019 Dec; 184():110536. PubMed ID: 31639567 [TBL] [Abstract][Full Text] [Related]
29. Intracellular Proteolytic Disassembly of Self-Quenched Near-Infrared Nanoparticles Turning Fluorescence on for Tumor-Targeted Imaging. Jiang J; Zhao Z; Hai Z; Wang H; Liang G Anal Chem; 2017 Sep; 89(18):9625-9628. PubMed ID: 28874046 [TBL] [Abstract][Full Text] [Related]
30. A Protein-Polymer Bioconjugate-Coated Upconversion Nanosystem for Simultaneous Tumor Cell Imaging, Photodynamic Therapy, and Chemotherapy. Dong C; Liu Z; Wang S; Zheng B; Guo W; Yang W; Gong X; Wu X; Wang H; Chang J ACS Appl Mater Interfaces; 2016 Dec; 8(48):32688-32698. PubMed ID: 27934134 [TBL] [Abstract][Full Text] [Related]
31. Fibronectin-Targeting and Cathepsin B-Activatable Theranostic Nanoprobe for MR/Fluorescence Imaging and Enhanced Photodynamic Therapy for Triple Negative Breast Cancer. Wang Y; Jiang L; Zhang Y; Lu Y; Li J; Wang H; Yao D; Wang D ACS Appl Mater Interfaces; 2020 Jul; 12(30):33564-33574. PubMed ID: 32633941 [TBL] [Abstract][Full Text] [Related]
32. Hydrogen Sulfide-Induced Activatable Photodynamic Therapy Adjunct to Disruption of Subcellular Glycolysis in Cancer Cells by a Fluorescence-SERS Bimodal Iridium Metal-Organic Hybrid. Shamjith S; Murali VP; Joesph MM; T S F; Chandana R; Jayarajan RO; Maiti KK ACS Appl Mater Interfaces; 2024 May; 16(21):27114-27126. PubMed ID: 38747624 [TBL] [Abstract][Full Text] [Related]
33. Bacteria-Targeted Supramolecular Photosensitizer Delivery Vehicles for Photodynamic Ablation Against Biofilms. Gao Y; Wang J; Hu D; Deng Y; Chen T; Jin Q; Ji J Macromol Rapid Commun; 2019 Feb; 40(4):e1800763. PubMed ID: 30500097 [TBL] [Abstract][Full Text] [Related]
34. Enhanced Fluorescence Imaging and Photodynamic Cancer Therapy Using Hollow Mesoporous Nanocontainers. Hong SH; Kim H; Choi Y Chem Asian J; 2017 Jul; 12(14):1700-1703. PubMed ID: 28463441 [TBL] [Abstract][Full Text] [Related]
35. Design of an Amphiphilic iRGD Peptide and Self-Assembling Nanovesicles for Improving Tumor Accumulation and Penetration and the Photodynamic Efficacy of the Photosensitizer. Jiang Y; Pang X; Liu R; Xiao Q; Wang P; Leung AW; Luan Y; Xu C ACS Appl Mater Interfaces; 2018 Sep; 10(37):31674-31685. PubMed ID: 30133254 [TBL] [Abstract][Full Text] [Related]
36. Red emitting conjugated polymer based nanophotosensitizers for selectively targeted two-photon excitation imaging guided photodynamic therapy. Duan X; Jiang XF; Hu D; Liu P; Li S; Huang F; Ma Y; Xu QH; Cao Y Nanoscale; 2018 Dec; 11(1):185-192. PubMed ID: 30525149 [TBL] [Abstract][Full Text] [Related]
37. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Jin CS; Cui L; Wang F; Chen J; Zheng G Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930 [TBL] [Abstract][Full Text] [Related]
38. An intelligent dual stimuli-responsive photosensitizer delivery system with O Zhao H; Li L; Zheng C; Hao Y; Niu M; Hu Y; Chang J; Zhang Z; Wang L Colloids Surf B Biointerfaces; 2018 Jul; 167():299-309. PubMed ID: 29679806 [TBL] [Abstract][Full Text] [Related]
40. Engineering a Facile Aptamer "Molecule-Doctor" with Hairpin-Contained I-Motif Enables Accurate Imaging and Killing of Cancer Cells. Ma W; Sun H; Chen B; Jia R; Huang J; Cheng H; He X; Huang M; Wang K Anal Chem; 2021 Nov; 93(43):14552-14559. PubMed ID: 34677940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]