These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29181976)

  • 1. Effect of Low Temperature on Charge Transport in Operational Planar and Mesoporous Perovskite Solar Cells.
    Petrović M; Ye T; Chellappan V; Ramakrishna S
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42769-42778. PubMed ID: 29181976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.
    Johnston MB; Herz LM
    Acc Chem Res; 2016 Jan; 49(1):146-54. PubMed ID: 26653572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and balanced charge transport revealed in planar perovskite solar cells.
    Chen Y; Peng J; Su D; Chen X; Liang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4471-5. PubMed ID: 25695862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved charge carrier dynamics in polymer/perovskite nanocrystal based hybrid ternary solar cells.
    Soltani R; Puscher BMD; Katbab AA; Levchuk I; Kazerouni N; Gasparini N; Camaioni N; Osvet A; Batentschuk M; Fink RH; Guldi DM; Ameri T
    Phys Chem Chem Phys; 2018 Sep; 20(36):23674-23683. PubMed ID: 30191206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells.
    Meng L; You J; Guo TF; Yang Y
    Acc Chem Res; 2016 Jan; 49(1):155-65. PubMed ID: 26693663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells.
    Leijtens T; Lauber B; Eperon GE; Stranks SD; Snaith HJ
    J Phys Chem Lett; 2014 Apr; 5(7):1096-102. PubMed ID: 26274455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge carrier recombination dynamics in a bi-cationic perovskite solar cell.
    Zhao JS; Wang HY; Yu M; Hao MY; Yuan S; Qin Y; Fu LM; Zhang JP; Ai XC
    Phys Chem Chem Phys; 2019 Mar; 21(10):5409-5415. PubMed ID: 30785439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps.
    Oga H; Saeki A; Ogomi Y; Hayase S; Seki S
    J Am Chem Soc; 2014 Oct; 136(39):13818-25. PubMed ID: 25188538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding charge trapping/detrapping at the zinc oxide (ZnO)/MAPbI
    Kim Y; Park B
    Nanoscale; 2018 Nov; 10(43):20377-20383. PubMed ID: 30376018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge Transport Limitations in Perovskite Solar Cells: The Effect of Charge Extraction Layers.
    Grill I; Aygüler MF; Bein T; Docampo P; Hartmann NF; Handloser M; Hartschuh A
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37655-37661. PubMed ID: 29019644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of biphasic charge recombination and accumulation in TiO2 mesoporous structured perovskite solar cells.
    Wang HY; Wang Y; Yu M; Han J; Guo ZX; Ai XC; Zhang JP; Qin Y
    Phys Chem Chem Phys; 2016 Apr; 18(17):12128-34. PubMed ID: 27076212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chloride substitution on interfacial charge transfer processes in MAPbI
    Li Z; Kolodziej C; McCleese C; Wang L; Kovalsky A; Samia AC; Zhao Y; Burda C
    Nanoscale Adv; 2019 Feb; 1(2):827-833. PubMed ID: 36132250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transport and recombination in dye-sensitized mesoporous TiO2 probed by photoinduced charge-conductivity modulation spectroscopy with Monte Carlo modeling.
    Petrozza A; Groves C; Snaith HJ
    J Am Chem Soc; 2008 Oct; 130(39):12912-20. PubMed ID: 18767840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping.
    Kiermasch D; Rieder P; Tvingstedt K; Baumann A; Dyakonov V
    Sci Rep; 2016 Dec; 6():39333. PubMed ID: 27982095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-Trapping Model for the Charge Recombination Dynamics in Mesoporous-Structured Perovskite Solar Cells.
    Wang HY; Wang Y; Hao MY; Qin Y; Fu LM; Guo ZX; Ai XC; Zhang JP
    ChemSusChem; 2017 Dec; 10(24):4872-4878. PubMed ID: 29094491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics.
    Zhao Y; Nardes AM; Zhu K
    Faraday Discuss; 2014; 176():301-12. PubMed ID: 25407110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Disorder in Higher-Temperature Phases Increases Charge Carrier Lifetimes in Metal Halide Perovskites.
    Shi R; Fang Q; Vasenko AS; Long R; Fang WH; Prezhdo OV
    J Am Chem Soc; 2022 Oct; 144(41):19137-19149. PubMed ID: 36206144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI
    He J; Casanova D; Fang WH; Long R; Prezhdo OV
    J Phys Chem Lett; 2020 Jun; 11(11):4481-4489. PubMed ID: 32423207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Vertical Inhomogeneity on the Charge Extraction in Perovskite Solar Cells: A Study by Depth-Dependent Photoluminescence.
    Regalado-Pérez E; Díaz-Cruz EB; Landa-Bautista J; Mathews NR; Mathew X
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11833-11844. PubMed ID: 33651611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.