These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29182094)

  • 1. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.
    Lee DY; Kim SR; Kim JS; Park JJ; Cho KJ
    Soft Robot; 2017 Jun; 4(2):163-180. PubMed ID: 29182094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene Oxide-Enabled Synthesis of Metal Oxide Origamis for Soft Robotics.
    Yang H; Yeow BS; Chang TH; Li K; Fu F; Ren H; Chen PY
    ACS Nano; 2019 May; 13(5):5410-5420. PubMed ID: 30896919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speed consensus control for a parallel six-wheel-legged robot on uneven terrain.
    Wang L; Lei T; Si J; Xu K; Wang X; Wang J; Wang S
    ISA Trans; 2022 Oct; 129(Pt A):628-641. PubMed ID: 35034782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-load capacity origami transformable wheel.
    Lee DY; Kim JK; Sohn CY; Heo JM; Cho KJ
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origami-based earthworm-like locomotion robots.
    Fang H; Zhang Y; Wang KW
    Bioinspir Biomim; 2017 Oct; 12(6):065003. PubMed ID: 28777743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Annelid-inspired high-elongation origami robot using partial material removal.
    Wei X; Zhao Y; Fan Z; Guo Z; Han Z; Shan Y; Liu Z
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36541461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origami-Enhanced Mechanical Properties for Worm-Like Robot.
    Liu Z; He Z; Hu X; Sun Z; Ge Q; Xu J; Fang H
    Soft Robot; 2024 Jul; ():. PubMed ID: 38963793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Research of All-Terrain Wheel-Legged Robot.
    Zhao J; Han T; Wang S; Liu C; Fang J; Liu S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth Inverse Kinematics.
    Santoso J; Onal CD
    Soft Robot; 2021 Aug; 8(4):371-386. PubMed ID: 32721270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the fold: proprioceptive feedback in a soft origami robot.
    Hanson N; Mensah IA; Roberts SF; Healey J; Wu C; Dorsey KL
    Front Robot AI; 2024; 11():1396082. PubMed ID: 38835929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse Origami Design Model for Soft Robotic Development.
    Hu Q; Li J; Tao J; Dong E; Sun D
    Soft Robot; 2024 Feb; 11(1):131-139. PubMed ID: 37616548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applied origami. A method for building self-folding machines.
    Felton S; Tolley M; Demaine E; Rus D; Wood R
    Science; 2014 Aug; 345(6197):644-6. PubMed ID: 25104380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guiding the folding pathway of DNA origami.
    Dunn KE; Dannenberg F; Ouldridge TE; Kwiatkowska M; Turberfield AJ; Bath J
    Nature; 2015 Sep; 525(7567):82-6. PubMed ID: 26287459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quasi-static model of wheel-tissue interaction for surgical robotics.
    Wang X; Sliker LJ; Qi HJ; Rentschler ME
    Med Eng Phys; 2013 Sep; 35(9):1368-76. PubMed ID: 23582337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage.
    Wang LC; Song WL; Fang D
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3450-3458. PubMed ID: 30560654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable-stiffness-morphing wheel inspired by the surface tension of a liquid droplet.
    Lee JY; Han S; Kim M; Seo YS; Park J; Park DI; Park C; Seo H; Lee J; Kim HS; Bak J; Rodrigue H; Kim JG; Cheong J; Song SH
    Sci Robot; 2024 Aug; 9(93):eadl2067. PubMed ID: 39141707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An origami-inspired, self-locking robotic arm that can be folded flat.
    Kim SJ; Lee DY; Jung GP; Cho KJ
    Sci Robot; 2018 Mar; 3(16):. PubMed ID: 33141746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear mechanics of non-rigid origami: an efficient computational approach.
    Liu K; Paulino GH
    Proc Math Phys Eng Sci; 2017 Oct; 473(2206):20170348. PubMed ID: 29118663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of complex origami assemblages for reconfigurable structures.
    Zhao Z; Kuang X; Wu J; Zhang Q; Paulino GH; Qi HJ; Fang D
    Soft Matter; 2018 Oct; 14(39):8051-8059. PubMed ID: 30255916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Highly Compact Zip Chain Arm with Origami-Inspired Folding Chain Structures.
    Kim DK; Jung GP
    Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37218762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.