These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29182176)

  • 21. Antimony-Assisted Assembly of Basic Supertetrahedral Clusters into Heterometallic Chalcogenide Supraclusters.
    Ding Y; Zhang J; Liu C; Wang XL; Wu Z; Wang X; Zhou R; Li DS; Wu T
    Inorg Chem; 2020 Sep; 59(18):13000-13004. PubMed ID: 32886495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake.
    Chen SQ; Zhai QG; Li SN; Jiang YC; Hu MC
    Inorg Chem; 2015 Jan; 54(1):10-2. PubMed ID: 25494676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organo-gallium/indium chalcogenide complexes of copper(I): molecular structures and thermal decomposition to ternary semiconductors.
    Kluge O; Biedermann R; Holldorf J; Krautscheid H
    Chemistry; 2014 Jan; 20(5):1318-31. PubMed ID: 24338681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heavy-metal-ion capture, ion-exchange, and exceptional acid stability of the open-framework chalcogenide (NH(4))(4)In(12)Se(20).
    Manos MJ; Malliakas CD; Kanatzidis MG
    Chemistry; 2007; 13(1):51-8. PubMed ID: 17120263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controllable incorporation of 1,2,4-triazolate into cluster-based metal-chalcogenide frameworks.
    Liu X; Xue C; Wang X; Zhang J; Wu T
    Dalton Trans; 2020 Aug; 49(33):11489-11492. PubMed ID: 32807996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of Interpenetrated Ruthenium Metal-Organic Frameworks as Stable Photocatalysts for CO2 Reduction.
    Zhang S; Li L; Zhao S; Sun Z; Luo J
    Inorg Chem; 2015 Sep; 54(17):8375-9. PubMed ID: 26347291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen adsorption in an interpenetrated dynamic metal-organic framework.
    Chen B; Ma S; Zapata F; Lobkovsky EB; Yang J
    Inorg Chem; 2006 Jul; 45(15):5718-20. PubMed ID: 16841969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.
    Holmberg RJ; Burns T; Greer SM; Kobera L; Stoian SA; Korobkov I; Hill S; Bryce DL; Woo TK; Murugesu M
    Chemistry; 2016 Jun; 22(23):7711-5. PubMed ID: 27061210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two discrete dimeric metal-chalcogenide supertetrahedral clusters.
    Wu J; Chen N; Wu T
    Dalton Trans; 2023 Apr; 52(16):5019-5022. PubMed ID: 37060123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploiting high pressures to generate porosity, polymorphism, and lattice expansion in the nonporous molecular framework Zn(CN)2.
    Lapidus SH; Halder GJ; Chupas PJ; Chapman KW
    J Am Chem Soc; 2013 May; 135(20):7621-8. PubMed ID: 23634869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Strong Donor-Acceptor System Based on a Metal Chalcogenide Cluster and Porphyrin.
    Xu J; Xue LJ; Hou JL; Yin ZN; Zhang X; Zhu QY; Dai J
    Inorg Chem; 2017 Jul; 56(14):8036-8044. PubMed ID: 28653844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.
    Yuan M; Mitzi DB
    Dalton Trans; 2009 Aug; (31):6078-88. PubMed ID: 20449099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17].
    Manos MJ; Chrissafis K; Kanatzidis MG
    J Am Chem Soc; 2006 Jul; 128(27):8875-83. PubMed ID: 16819882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal-organic framework.
    Eubank JF; Walsh RD; Eddaoudi M
    Chem Commun (Camb); 2005 Apr; (16):2095-7. PubMed ID: 15846411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly of super-supertetrahedral metal-organic clusters into a hierarchical porous cubic framework.
    Wang L; Morales J; Wu T; Zhao X; Beyermann WP; Bu X; Feng P
    Chem Commun (Camb); 2012 Aug; 48(60):7498-500. PubMed ID: 22728791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An interpenetrated framework material with hysteretic CO(2) uptake.
    Mulfort KL; Farha OK; Malliakas CD; Kanatzidis MG; Hupp JT
    Chemistry; 2010 Jan; 16(1):276-81. PubMed ID: 19918820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation.
    Bag S; Kanatzidis MG
    J Am Chem Soc; 2010 Oct; 132(42):14951-9. PubMed ID: 20925321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An interpenetrated bioactive nonlinear optical MOF containing a coordinated quinolone-like drug and Zn(II) for pH-responsive release.
    Duan LN; Dang QQ; Han CY; Zhang XM
    Dalton Trans; 2015 Jan; 44(4):1800-4. PubMed ID: 25473930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One non-interpenetrated chiral porous multifunctional metal-organic framework and its applications for sensing small solvent molecules and adsorption.
    Qin L; Zheng MX; Guo ZJ; Zheng HG; Xu Y
    Chem Commun (Camb); 2015 Feb; 51(12):2447-9. PubMed ID: 25567429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.