These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29182278)

  • 1. Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers.
    Kawakami LM; Yoon BK; Jackman JA; Knoll W; Weiss PS; Cho NJ
    Langmuir; 2017 Dec; 33(51):14756-14765. PubMed ID: 29182278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Membrane Curvature Nanoarchitectonics on Membrane-Disruptive Interactions of Antimicrobial Lipids and Surfactants.
    Moon S; Yoon BK; Jackman JA
    Langmuir; 2022 Apr; 38(15):4606-4616. PubMed ID: 35389653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling.
    Yoon BK; Park S; Ma GJ; Kolahdouzan K; Zhdanov VP; Jackman JA; Cho NJ
    J Phys Chem Lett; 2020 Jul; 11(13):4951-4957. PubMed ID: 32478524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing How Acidic pH Conditions Affect the Membrane-Disruptive Activities of Lauric Acid and Glycerol Monolaurate.
    Valle-González ER; Jackman JA; Yoon BK; Park S; Sut TN; Cho NJ
    Langmuir; 2018 Nov; 34(45):13745-13753. PubMed ID: 30343569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers.
    Yoon BK; Jackman JA; Park S; Mokrzecka N; Cho NJ
    Langmuir; 2019 Mar; 35(9):3568-3575. PubMed ID: 30720282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the Supported Lipid Membrane Formation from Cholesterol-Rich Bicelles.
    Sut TN; Park S; Choe Y; Cho NJ
    Langmuir; 2019 Nov; 35(47):15063-15070. PubMed ID: 31670521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their Hydrophobic Thickness.
    Meker S; Chin H; Sut TN; Cho NJ
    Langmuir; 2018 Aug; 34(32):9548-9560. PubMed ID: 30021071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies.
    Swana KW; Camesano TA; Nagarajan R
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Quartz Crystal Microbalance Monitoring of Free Docosahexaenoic Acid Interactions with Supported Lipid Bilayers.
    Flynn KR; Martin LL; Ackland ML; Torriero AA
    Langmuir; 2016 Nov; 32(45):11717-11727. PubMed ID: 27728769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quartz Crystal Microbalances as Tools for Probing Protein-Membrane Interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2019; 2003():31-52. PubMed ID: 31218612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation.
    Zhu X; Wang Z; Zhao A; Huang N; Chen H; Zhou S; Xie X
    Colloids Surf B Biointerfaces; 2014 Apr; 116():459-64. PubMed ID: 24552662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling Membrane-Disruptive Properties of Sodium Lauroyl Lactylate and Its Hydrolytic Products: A QCM-D and EIS Study.
    Gooran N; Tan SW; Yoon BK; Jackman JA
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures.
    Kolahdouzan K; Jackman JA; Yoon BK; Kim MC; Johal MS; Cho NJ
    Langmuir; 2017 May; 33(20):5052-5064. PubMed ID: 28457139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling How Antimicrobial Lipid Mixtures Disrupt Virus-Mimicking Lipid Vesicles: A QCM-D Study.
    Moon S; Sut TN; Yoon BK; Jackman JA
    Biomimetics (Basel); 2024 Jan; 9(2):. PubMed ID: 38392113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supported Lipid Bilayer Formation from Phospholipid-Fatty Acid Bicellar Mixtures.
    Sut TN; Park S; Yoon BK; Jackman JA; Cho NJ
    Langmuir; 2020 May; 36(18):5021-5029. PubMed ID: 32308002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do sterols reduce proton and sodium leaks through lipid bilayers?
    Haines TH
    Prog Lipid Res; 2001 Jul; 40(4):299-324. PubMed ID: 11412894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating Membrane Morphological Responses with Micellar Aggregation Behavior of Capric Acid and Monocaprin.
    Yoon BK; Jackman JA; Kim MC; Sut TN; Cho NJ
    Langmuir; 2017 Mar; 33(11):2750-2759. PubMed ID: 28263610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quartz crystal microbalances as tools for probing protein-membrane interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2013; 974():1-21. PubMed ID: 23404269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of graphene oxide with artificial cell membranes: Role of anionic phospholipid and cholesterol in nanoparticle attachment and membrane disruption.
    Feng Y; Zhang Y; Liu G; Liu X; Gao S
    Colloids Surf B Biointerfaces; 2021 Jun; 202():111685. PubMed ID: 33721805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of supported lipid bilayers at surfaces with controlled curvatures: influence of lipid charge.
    Sundh M; Svedhem S; Sutherland DS
    J Phys Chem B; 2011 Jun; 115(24):7838-48. PubMed ID: 21630649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.