These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29182307)

  • 1. Model Study To Assess Softwood Hemicellulose Hydrolysates as the Carbon Source for PHB Production in Paraburkholderia sacchari IPT 101.
    Dietrich K; Dumont MJ; Schwinghamer T; Orsat V; Del Rio LF
    Biomacromolecules; 2018 Jan; 19(1):188-200. PubMed ID: 29182307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.
    Ehsanipour M; Suko AV; Bura R
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose.
    Li M; Wilkins MR
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):185-193. PubMed ID: 32895870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1994; 45-46():367-81. PubMed ID: 8010766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1.
    Van-Thuoc D; Quillaguamán J; Mamo G; Mattiasson B
    J Appl Microbiol; 2008 Feb; 104(2):420-8. PubMed ID: 17887984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion.
    Moldes AB; Bustos G; Torrado A; Domínguez JM
    Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: Impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation.
    Jin P; Li S; Lu SG; Zhu JG; Huang H
    Bioresour Technol; 2011 Jan; 102(2):1815-21. PubMed ID: 21036601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-yield fermentation of pentoses into lactic acid.
    Iyer PV; Thomas S; Lee YY
    Appl Biochem Biotechnol; 2000; 84-86():665-77. PubMed ID: 10849826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation.
    Brandenburg J; Blomqvist J; Pickova J; Bonturi N; Sandgren M; Passoth V
    Yeast; 2016 Aug; 33(8):451-62. PubMed ID: 26945827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of inhibitory compounds and minor sugars on xylitol production by Debaryomyces hansenii.
    Sampaio FC; Torre P; Passos FM; de Moraes CA; Perego P; Converti A
    Appl Biochem Biotechnol; 2007 Feb; 136(2):165-82. PubMed ID: 17496338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process.
    De Bari I; Cuna D; Di Matteo V; Liuzzi F
    N Biotechnol; 2014 Mar; 31(2):185-95. PubMed ID: 24378965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of byproducts in lignocellulose hydrolysates on ethanol fermentation by Issatchenkia orientalis].
    Wang F; Liu Y; Zhang R; Wang Y; Xie H; Song A
    Sheng Wu Gong Cheng Xue Bao; 2014 May; 30(5):753-64. PubMed ID: 25118399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose.
    Jeong TS; Um BH; Kim JS; Oh KK
    Appl Biochem Biotechnol; 2010 May; 161(1-8):22-33. PubMed ID: 20087686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single and combined effects of acetic acid, furfural, and sugars on the growth of the pentose-fermenting yeast
    Perna MDSC; Bastos RG; Ceccato-Antonini SR
    3 Biotech; 2018 Feb; 8(2):119. PubMed ID: 29430380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity.
    Kim M; Kim KY; Lee KM; Youn SH; Lee SM; Woo HM; Oh MK; Um Y
    Bioresour Technol; 2016 Oct; 218():1208-14. PubMed ID: 27474955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies.
    Lu Y; Warner R; Sedlak M; Ho N; Mosier NS
    Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus.
    Saha BC; Kennedy GJ
    Lett Appl Microbiol; 2017 Dec; 65(6):527-533. PubMed ID: 28977696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.